CS3243 Tutorial Group 7

Tutorial 3 – Informed Search

CS3243 T07

Quick recap

- Class of algorithms: best-first search
 - Use an evaluation function f(n) = cost estimate; expand node with the lowest estimate first
- Greedy best-first search
 - Evaluation function f(n) = h(n)
 - Heuristic function h(n) = estimated cost of cheapest path from n to goal
 - Complete for graph-search (in finite spaces) but **not complete for tree-search** (even in finite spaces)
- A* search: avoid expanding paths that are already expensive
 - Evaluation function f(n) = g(n) + h(n)

- Heuristics:
 - Admissible (never overestimates)
 - Consistent/monotone = f(n) is monotonically non-decreasing along every path
 - Dominance: dominant heuristics expand fewer nodes
 - Deriving admissible heuristics from relaxed problems
- Local search: hill-climbing

Intuition for admissible vs consistent

- admissible if it always underestimates path costs to the goal: $\forall n,$ $h(n) \leq h^*(n)$
- consistent if it always underestimates step costs between nodes:

$$\begin{array}{ll} \forall n, n', \\ h(n) \leq d(n, n') + h(n') & \text{(original statement)} \\ & \text{Equivalently:} \\ h(n) - h(n') \leq d(n, n') & \text{(restatement)} \end{array} \end{array}$$

Now obvious why consistent implies admissible!

implied estimate of the step cost between n and n'

- We use these invariants of UCS, which follow directly from the construction of the algorithm:
 - 1. The frontier expands by exploring <u>all edges</u> out of the initial node, i.e. it forms a perimeter around it.
 - 2. Since all step costs $\geq \varepsilon$, g(n) is monotonically non-decreasing along any path.
 - 3. When a node n is chosen for expansion, g(n) is \leq the cost of any other nodes in the frontier.
- Together, these invariants imply the property P:

whenever a node n is chosen for expansion, g(n) is the shortest path cost from the initial node to n

- Proof (by contradiction):
 - *n* is chosen for expansion.
 - Suppose there exists a path from the initial node to n that has lower cost than g(n).
 - By inv. 1, the only way to find such a path is by expanding one of the nodes in the frontier (expanding the perimeter).
 - But by inv. 3, all nodes q in the frontier have $g(q) \le g(n)$, since n was selected for expansion.
 - However, by inv 2., all paths from any node q have cost at least $g(q) + \varepsilon$, which is strictly greater than g(n). Contradiction.
- By P, when a goal node is expanded, it has the lowest path cost
 - i.e. UCS is optimal

Consistency guarantees this; just replace g(n) with f(n) throughout