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Abstract
We present the design and implementation of the Small Scale Reflection proof methodology and
tactic language (a.k.a. SSR) for the Lean 4 proof assistant. Like its Coq predecessor SSReflect,
our Lean 4 implementation, dubbed LeanSSR, provides powerful rewriting principles and means for
effective management of hypotheses in the proof context. Unlike SSReflect for Coq, LeanSSR does
not require explicit switching between the logical and symbolic representation of a goal, allowing for
even more concise proof scripts that seamlessly combine deduction steps with proofs by computation.

In this paper, we first provide a gentle introduction to the principles of structuring mechanised
proofs using LeanSSR. Next, we show how the native support for metaprogramming in Lean 4 makes
it possible to develop LeanSSR entirely within the proof assistant, greatly improving the overall
experience of both tactic implementers and proof engineers. Finally, we demonstrate the utility of
LeanSSR by conducting two case studies: (a) porting a collection of Coq lemmas about sequences
from the widely used Mathematical Components library and (b) reimplementing proofs in the finite
set library of Lean’s mathlib4. Both case studies show significant reduction in proof sizes.

1 Introduction

Small Scale Reflection (SSR) is a methodology for structuring deductive machine-assisted
proofs that promotes the pervasive use of computable symbolic representations of data
properties, in addition to their more conventional logical definitions in the form of inductive
relations. Small scale reflection emerged from the prominent effort to mechanise the proof
of the Four Colour Theorem in the Coq proof assistant [9], in which the large number of
cases to be discharged posed a significant scalability challenge for a traditional proof style
based on tactics that operate directly with the logical representation of a goal. Support
for small scale reflection in Coq has later been implemented in the form of the SSReflect
plugin, which provides a concise tactic language, and its associated library of lemmas [11],
becoming an indispensable tool for the working Coq user. SSReflect has been employed in
many projects, including mechanisations of the foundations of group theory [10], measure
theory [2], information theory [3], 3D geometry [1], programming language semantics [30], as
well as proving the correctness of heap-manipulating, concurrent and distributed programs [20,
23,26,27], and probabilistic data structures [12]. Two SSReflect tutorials [18,25] are currently
recommended amongst the basic learning materials for Coq [6].

Lean 4 is a relatively new proof assistant and dependently typed programming lan-
guage [7].1 Like Coq, Lean is based on the Calculus of Constructions with inductive types
and is geared towards interactive proofs, coming with extensive support for metaprogram-
ming aimed at simplifying custom proof automation and code generation. Unlike Coq,
Lean assumes axioms of classical logic, such as the law of excluded middle. Very much
in the spirit of the SSR philosophy of reflecting proofs about decidable propositions into
Boolean-returning computations, Lean encourages the use of such propositions (implemented

1 In the rest of the paper, we will refer to the latest version 4 of the framework simply as Lean.
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as an instance of the Decidable type class) as if they were Boolean expressions, going as
far as providing a program-level if-then-else operator that performs conditioning on an
instance of a decidable proposition. Given this similarity of approaches, it was only natural
for us to try to bring the familiar SSR tactic language to Lean, as an alternative to Lean’s
descriptive but verbose idiomatic approach to proof construction. Our secondary motivation
was to put Lean’s metaprogramming to the test, implementing SSR entirely within the proof
assistant, in contrast with SSReflect, which is implemented as a Coq plugin in OCaml.

In this paper, we present LeanSSR, a proof scripting language that faithfully replicates the
SSReflect experience in Lean, yet provides substantially better proof ergonomics, thanks to
Lean’s distinctive features, improving on its Coq predecessor in the following three aspects:
1. Usability: Compared to Coq/SSReflect, which only shows the proof context between

complete series of chained tactic applications, LeanSSR provides a more fine-grained access
to the proof state, displaying its changes after executing each “atomic” step—a feature
made possible by Lean’s mechanism of proof state annotations.

2. Expressivity: Unlike SSReflect for Coq, LeanSSR does not require the user to explicitly
switch between representation of facts as logical propositions or as symbolic expressions to
advance the proof. In particular, this automation makes it possible to unify simplifications
via computation and via equality-based rewriting, resulting in very concise proof scripts.

3. Extensibility: Since LeanSSR is lightweight, i.e., it is implemented entirely in Lean using
its metaprogramming facilities, it can be easily enhanced with additional tactics and proof
automation machineries specific to a particular project that uses it.

In the rest of the paper, we showcase LeanSSR, substantiating the three claims above.
Contributions and Outline. In this work, we make the following contributions:

An implementation of LeanSSR, an SSReflect-style tactic language for Lean.2

A tutorial on using LeanSSR following a series of characteristic proof examples (Sec. 2).
A detailed overview of Lean metaprogramming features that we consider essential for
implementing LeanSSR and the effect of those features on the end-user experience (Sec. 3).
Two case studies demonstrating LeanSSR’s utility for proof migration and evolution:
(a) porting a collection of Coq lemmas about finite sequences from the MathComp
library [18] to Lean and (b) reimplementing proofs from the finite set library of Lean’s
mathlib4 in LeanSSR (Sec. 4). While proof sizes reduce in both cases, we also comment
on our overall better mechanisation experience, compared to refactoring original proofs in
both Coq and Lean—thanks to the improved usability aspect highlighted above.

2 LeanSSR in Action

In this section we give a tutorial on the main elements of the LeanSSR proof language. We
do not expect the reader to be familiar with the standard Lean tactics. This section will
also be informative for the readers familiar with SSReflect for Coq due to the improvements
LeanSSR makes over SSReflect in terms of usability (Sec. 2.4) and expressivity (Sec. 2.6).

2.1 Managing the Context and the Goal in Backward Proofs
As customary for interactive proof assistants based on higher-order logic, Lean represents
the proof state as a logical sequent, as depicted in Fig. 1.

2 The snapshot of LeanSSR development accompanying this submission is available online [8].
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ci : Ti

. . .

Fk : Pk

. . .

∀xl : Tl, . . . , Pn → · · · → C

Fig. 1. Proof state as a sequent

The proof goal is the logical statement below the hori-
zontal line; above the line is the local context of the sequent,
a set of constants ci and facts (i.e., hypotheses) Fk. The
goal statement itself can be decomposed into (a) goal
context: quantified variables xl : Tl and assumptions Pn,
and (b) the conclusion statement C. Both local and goal
contexts capture the bound variables (term-level or hypo-
theses) of the overall proof term to be constructed, with the only difference being the explicit
names of the variables in the local context. Lean tactics, such as apply, operate directly on
the goal’s conclusion using variables from the local context referring to them by their names,
while tactics such as intro and revert move variables/hypotheses between the local and the
goal context. In practice, such “bookkeeping” of variables and hypotheses contributes most
of the proof script burden; so, following SSReflect, LeanSSR provides tactics to streamline it.

Specifically, LeanSSR provides mechanisms to operate directly with the goal context,
treating the goal as a stack, where the left-most variable or assumption is the top of the stack,
and the conclusion is always at the bottom of the stack. By convention, most of LeanSSR
tactics, operate with the top element of the goal stack. As an example, LeanSSR defines
sapply, a variant of the standard Lean apply tactics (many LeanSSR tactics come with the
prefix s* to distinguish them from their standard Lean counterparts) to simplify backward
proofs [4, Chapter 3]. As Fig. 2a shows, sapply applies the first element on the goal stack
(i.e., the hypothesis of type α) to the rest of the stack (i.e., the goal’s conclusion α).

A typical proof in LeanSSR is done by moving variables and assumptions back and forth
between the local context and the goal context, placing the terms to be used in a current proof
step on top of the goal stack. Such proof context management is done via two complementary
tacticals: => and :. The former one (=>) moves facts above the sequent line, whereas the
latter one moves facts below, “pushing” them to the goal stack. Fig. 2b and 2c showcase the
usage of => and :. The proof in Fig. 2b starts with move=> hA ?, where move essentially
does nothing: its goal is to serve as a no-op tactic, to be followed by either => or :. What
follows (=> hA ?) is an example of an intro pattern (more patterns will be shown below)
that introduces the first two elements of the goal context, the first named hA and the second
with an auto-generated name. To apply the introduced assumption hA we have to revert it
back to the top of the proof context; the next line move: hA does exactly that.

Lean users might notice that => and : are similar to the standard intro and revert Lean
tactics. Fig. 2c demonstrates the versatility of the LeanSSR tacticals when combined with
different intro patterns. For instance, to swap the first two elements of the proof stack, Fig. 2c
makes use of the /[swap] intro pattern. This will turn our goal to (α -> β) -> α -> β.
Other useful SSReflect-inspired intro patterns include * for introducing all elements on the
proof stack, _ for discarding the first element on the proof stack, and /[dup] for duplicating
the first element on the stack. Furthermore, as the purpose of LeanSSR tacticals is to
“massage” the shape of the goal, they can be smoothly combined with other LeanSSR tactics

example: α -> α :=
by sapply

(a) Using sapply tactic

example: α -> β -> α :=
by move=> hA ?

move: hA; sapply

(b) Basic LeanSSR proof script

example: α -> (α -> β) -> β :=
by move=> /[swap] hAiB

sapply: hAiB

(c) A proof using /[swap] intro pattern

Fig. 2. LeanSSR proof scripts using the sapply tactic, => and : tacticals, and intro patterns.
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that operate directly on the goal stack. In particular, Fig. 2c combines sapply with : (i.e.,
sapply: hAiB), with the effect of first pushing hAiB : α -> β to the goal stack and then
executing the sapply tactic, discharging the goal similarly to the example from Fig. 2a.

2.2 Induction, Case Analysis, and Last-Mile Automation

example (m n : Nat): n <= m ->
m - n + n = m := by
elim: n m=> [| n IHn [| m’]] //==
move=> ?; srw -[2](IHn m’) //

Fig. 3. A proof by mathematical induction

LeanSSR combines the tacticals for the goal con-
text management and intro patterns with tactics
for proofs by induction and case analysis. In
particular, LeanSSR introduces a variant of a
standard induction tactic called elim, which
expects no explicit arguments and simply ap-
plies the induction principle of the top element
of the goal stack. As an example, consider the proof by induction in Fig. 3 of a simple
property of natural addition and subtraction. As its first step, the proof generalises the two
natural constants, n and m by pushing them onto the goal, making it ∀ n m, n <= m -> m
- n + n = m; it is followed by an invocation of the induction principle for natural numbers
on n, with m being universally quantified; all that expressed simply as elim: n m.

Unlike Lean’s induction tactic, elim does not introduce new variables and facts to the
local context, leaving those universally quantified in the respective subgoals. In our example,
using elim on a natural number introduces two subgoals, one for the base zero and one for
the inductive step succ, with the latter featuring a predecessor variable and an inductive
hypothesis. Naming variables in subgoals can be done using the alternation separator intro
pattern of the form [ ... | ... | ... ] where each ... section corresponds to introductions in a
respective subgoal. We can, thus, revise our proof to be elim: n m=>[| n IHn], introducing
the variable and the hypothesis step to the local context as n and IHn, respectively.

Let us focus on the second subgoal (i.e., the inductive step), which now looks as follows:

∀m, n + 1 ≤ m → m − (n + 1) + (n + 1) = m (1)

The proof of (1) can be finished by the case analysis on m using LeanSSR’s scase tactic,
which will generate two subgoals, one for zero and one for succ. The latter will introduce yet
another universally-quantified variable, which can be suitably named and moved to the local
context: scase=> [| m’]. Such nested deconstructions of a goal’s top variable into cases
are so frequent that LeanSSR overloads the alternation separator intro pattern to perform
case analyses with simultaneous naming. Hence, we can now revise our proof to first perform
top-level induction on n and then do case analysis on m in the resulting second subgoal via
elim: n m=> [| n IHn [| m’]].

Having executed this proof script line, we are left with three subgoals to discharge:

∀m : N, 0 ≤ m → m − 0 + 0 = m (2)
n + 1 ≤ 0 → 0 − (n + 1) + (n + 1) = 0 (3)

(n + 1) ≤ (m + 1) → (m + 1) − (n + 1) + (n + 1) = (m + 1) (4)

This would be a good time to make use of Lean’s famous automation to solve (2) and (3), and
simplify (4). LeanSSR provides the following intro patterns for such “last-mile” automation:

/= for simplification by evaluation (Lean’s dsimp) and /== for proofs by rewriting (simp)
// for a lightweight automation combining Lean tactics trivial and simp_all
//= abbreviating dsimp=> //, and //== abbreviating simp=> //
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(a) The proof view before introducig IHn (b) The proof view after introducig IHn

Fig. 4. Visual support for fine-grained proof state exploration with LeanSSR proof scripts.

In this case, using //== on all generated subgoals leaves us with only one obligation to prove:

n ≤ m′ → m′ − n + (n + 1) = ( m′ + 1) (5)

2.3 Targeted Rewriting using Equality Hypotheses
The remaining goal (5) can be proven using the previously introduced induction hypothesis
IHn : ∀ (m : Nat), n ≤ m → m - n + n = m. Intuitively, the proof can be completed
by replacing the highlighted second occurrence of m′ in (5) with m′ − n + n using the
right-hand side of the equality in IHn, and then finish the proof by the properties of linear
arithmetic and reflexivity. This can be achieved by LeanSSR rewriting tactic srw allowing one
to specify the term occurrence to be rewritten. The proof script in Fig. 3 ends with moving
the inequality n ≤ m’ to the local context via move=>?, followed by srw -[2](IHn m’) //,
where - stands for the right-to-left rewrite direction and [2] denotes the specific occurrence
of m’. Performing this rewrite generates the obligation n ≤ m’, which is discharged via //.

The srw tactic generalises Lean’s vanilla rw, allowing for constructions such as:
srw (drop_nth _ lt_i_m) //== -[1]h nth_index // -index_mem

that interleave rewrites with simplifications, resolving the appearing subgoals with //.

2.4 Fine-Grained Proof State Exploration and Error Highlighting
As our examples so far demonstrate, proofs in LeanSSR tend to be quite compact, thanks to
the concise nature of the tactic language that chains multiple manipulations with the goal
and the proof context into a single line of a proof script. The downside of this style is that
proofs often become difficult to follow and refactor—a frequent complaint by newcomers to
Coq/SSReflect who are familiar with the vanilla Coq proof mode. The problem of proof script
understanding and maintenance in SSReflect is exacerbated by the fact that Coq can only
display the proof context between complete series of chained tactic applications separated by
periods. When a mistake is made in the middle of a line in an SSReflect proof script, one
typically has to manually break the line into period-terminated parts, performing a binary
search-style debugging. In addition to that, if a particular intro pattern cannot be applied in
SSReflect, say we write [| | m] with three alternations instead of two in the proof of Fig. 3,
Coq will report an error for the entire script line, further complicating the search for a fix.

LeanSSR overcomes these hurdles, providing an improved (compared to SSReflect) experi-
ence to the users, thereby substantiating the usability claim (1) from Sec. 1.

First, the better proof debugging is made possible by the powerful feature of Lean that
allows the DSL designer to annotate each symbol in the tactic definition with the proof state
before and after its execution. For instance, if the user puts the pointer in the text buffer
with her proof script before the IHn token in Fig. 3, the goal display will be as in Fig. 4a,
highlighting the upcoming change in the goal in red. For the pointer positioned right after
IHn, the goal display shows the proof context as in Fig. 4b. Second, Lean provides a tunable
mechanism for precise error highlighting, so if we write [| | m] with three alternations
instead of two, only highlight the [| | m] part of the script will be marked as an error.
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2.5 Forward Reasoning via Views

example (A B C : Prop) :
(A → B) → (B → C) → A → C :=
by intro AiB BiC Ha

apply BiC
apply AiB
exact Ha

Fig. 5. A backward proof in vanilla Lean

So-called backward proofs, in which a conclusion
of a goal is gradually strengthened to be even-
tually discharged from the available hypotheses
or axioms, are prevalent in interactive proofs. A
very simple example of such a proof is given in
Fig. 5, which proves the conclusion C using the
reverse-order applications of the assumptions
BiC, AiB, and, eventually, Ha : A.

example (A B C : Prop) :
(A → B) → (B → C) → (A → C) :=
fun AiB BiC Ha 7→

have Hb : B := AiB Ha
have Hc : C := BiC Hb
show C from Hc

Fig. 6. A forward proof in vanilla Lean

That said, proof engineers trained in a tradi-
tion of purely mathematical proofs often prefer
the complementary forward style, in which the
assumptions are gradually weakened to even-
tually imply the conclusion [4, Chapter 4]. A
typical forward proof in Lean follows the so-
called assume/have/show pattern, which expli-
citly states the ∀-quantified variables and hypo-
theses as parameters of the proof term (assume) and the proof is comprises a number of
established auxiliary facts (have) that make the derivation of the conclusion trivial (show).
An example of such a forward proof in the conventional Lean notation is shown in Fig. 6.

LeanSSR offers an alternative way to construct forward proofs using the idea of view intro
patterns or simply views, adopted from the original SSReflect [11]. The proof of the fact from
Fig. 5 and 6 can be achieved in LeanSSR by the following single line:

by sby move=> AiB BiC /AiB/BiC

Ignoring sby for a moment, notice that the proof first moves the hypotheses AiB : A → B
and BiC : B → C to the context. What follows is an application of AiB to the leading (i.e.,
top) assumption of the goal A, which “switches” it to B, making the goal to be B → C. The
subsequent view /BiC switches the leading assumption from B to C. The remaining goal
C → C can be discharged by trivial (or LeanSSR’s //). This is done by the sby tactical at
the beginning of the line, which either completes the proof via // or fails. In fact, this makes
the second view redundant, so the proof can be shortened to by sby move=> AiB ? /AiB.

2.6 Proofs by Computational Reflection
The LeanSSR demonstration in Sec. 2.1–2.5 was merely a build-up to the true essence of the
framework: mechanised reasoning that features both deduction and proof via computation by
manipulating with equivalent logical and symbolic representations of decidable facts.

As a motivating example showing how to unify both these proof styles in LeanSSR,
consider the following simple proposition: assuming n is even, n + m is even if and only if
m is even. How should we express a decidable property, such as evenness? Proof assistants
based on higher-order logic, such as Coq, Isabelle/HOL, and Lean provide two conceptual
ways to do so: as a predicate (cf. Fig. 7a) and as a function (cf. Fig. 7b). The former
style comes with an advantage of providing a richer knowledge when a property occurs in a
goal’s assumption, e.g., by assuming even n we can deduce that it’s either zero or another
even number plus two. The latter comes with a set of reduction/rewrite principles, such as,
evenb n + 2 = evenb n, which is advantageous for simplifying the conclusion of a goal.

One can indeed establish an equivalence between the definitions even and evenb, proving
that ∀ n, even n ↔ (evenb n = true). Such an equivalence, when expressed as an
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inductive even : Nat → Prop
where
| ev0 : even 0
| ev2 : ∀ n, even n → even (n + 2)

(a) Even numbers as a logical predicate

def evenb : Nat → Bool
| 0 => true
| 1 => false
| n + 2 => evenb n

(b) Even numbers via a Boolean function

@[reflect] instance evenP n : Reflect (even n) (evenb n) := . . .

#reflect even evenb

example n m : even n → even (m + n) = even m := by
elim=> // n’ _ <-
srw -Nat.add_assoc /==

(c) A proof using reflection between the logical (even) and symbolic (evenb) definition of even numbers.

Fig. 7. Two equivalent definitions of even numbers (top), and a proof by reflection (bottom).

instance of the Decidable type class in Lean, can be exploited by allowing the user to define
computations that explicitly feature a predicate instead of its computable version, such as:

def even_indicator (n: Nat) : Nat := if even n then 1 else 0

This treatment of decidability also explains the somewhat frivolous phrasing of our proposition
of interest in terms equality instead of bi-implication (↔) in the statement in Fig. 7c. To
summarise, for Decidable properties, Lean aggressively promotes the logical definitions to
be considered as “primary”, while the symbolic ones serving merely as helpers for defining
computations and, occasionally, for simplifying goals in the proofs about equivalent predicates.

This is exactly where LeanSSR comes into play, making such simplifications transparent
to the user. Consider the proof of the example in Fig. 7c. The first line initiates the induction
on the even n premise, discharging the first trivial subgoal (for the case ev0), binding the
first argument n’ of the case ev2, ignoring the even n’ assumption (via _), and performing
the right-to-left rewrite using the induction hypothesis even (m + n’) = even m in the
conclusion (via the <- intro pattern), leaving us with the following goal to prove:

even (m + (n’ + 2)) = even (m + n’)

The remaining goal is not difficult to prove by using associativity of addition and showing
that ∀ x, even (x + 2) = even x. But also, this is an equality that we should have “for
free”, as it can be derived from the last clause of the definition of evenb in Fig. 7b!

To account for scenarios like this one, LeanSSR provides a machinery that allows one to
inherit reduction rules of a recursive (symbolic) boolean definition b to simplify instances
of the equivalent logical proposition P. To achieve that, one must prove an instance of the
Reflect P b predicate, which is essentially equivalent to proving P ↔ (b = true) (we
postpone the details of the Reflect definition until Sec. 3) and register this equivalence using
the pragma #reflect P b, which is exactly what is done by the first two lines of Fig. 7c. In
this case, doing so will add three simplification rules for even into a database of rewrites used
by simplification tactics such as simp and the corresponding LeanSSR patterns, e.g., /==:

even 0 = True even 1 = False ∀ n, even (n + 2) = even n

These equalities allow us to finish the proof by /==, rewriting even as if it were evenb.
LeanSSR’s Reflect type class is well integrated with the current Lean ecosystem. Once

one has proven Reflect P b, the corresponding Decidable instance is automatically derived
for P. Readers familiar with SSReflect for Coq could notice that a proof of the statement
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variable {α : Type} [DecidableEq α]

def mask: List Bool → List α → List α
| b :: m, x :: s =>

if b then x :: mask m s else mask m s
| _, _ => []

def subseq (s1 s2 : List α) : Prop :=
∃ m, length m = length s2 /\

s1 = mask m s2

def subseqb: List α → List α → Bool
| [], _ :: _ => true
| s, [] => s = []
| s@(x :: s’), y :: r =>

subseqb (if x = y then s’ else s) r

(a) Two representations of the subsequence relation

1 #reflect subseq subseqb
2

3 def transitive (R: α → α → Prop) :=
4 ∀x y z, R x y → R y z → R x z
5

6 example: transitive (@subseq α) := by
7 move=> ?? s ![m2 _ ->] ![m1 _ ->]
8 elim: s m1 m2=> [// |x s IHs1]
9 scase=> [// | [] m1 /= m2]

10 { -- m1’s head is false
11 scase!: (IHs1 m1 m2)=> m sz_m ->
12 sby exists (false :: m) }
13 -- m1’s head is true
14 scase: m2=> [|[] m2] //=
15 scase!: (IHs1 m1 m2)=> m sz_m ->
16 sby exists (false :: m)

(b) Proof that subseq is transitive

Fig. 8. A subsequence relation and the proof of its transitivity in LeanSSR.

from Fig. 7c in it would be more verbose, as it would require an explicit switching between
the logical predicate and its symbolic counterpart in the conclusion by applying a special
Reflect-lemma to the goal. This is not necessary in LeanSSR thanks to Lean’s ability
to use the derived rewriting principles (e.g., the three above for even) directly on logical
representations. We believe this example supports the expressivity claim (2) from Sec. 1.

2.7 Putting It All Together
We conclude this tutorial by showing how all the features of LeanSSR introduced in Sec. 2.1–
2.6 work in tandem in a proof of an interesting property: transitivity of the subsequence
relation on lists of elements with decidable equality. Fig. 8a presents two ways to define
the relation. The first one is via a predicate and an auxiliary mask function. The mask
function takes two lists: a list of Boolean values m and a list s of elements of some type
α. For each element of s, mask removes it if an element in m at the same position is either
false or not present (i.e., m is shorter than s). Then the representation of subsequence as a
logical predicate states that s1 is a subsequence of s2, if mask m s2 = s1 for some mask m.
The second definition is via a total recursive function subseqb returning a Boolean. This
definition we checks that each element in the first list corresponds to some element in the
second list using the decidable equality on the values of type α, whose existence is postulated
in the first line of the listing. For the propositional and Boolean representations above, we
can prove a Reflect instance (cf. Sec. 2.6), and transport reduction principles of subseqb
to subseq by adding the #reflect pragma as at the line 1 of Fig. 8b.

Fig. 8b shows the entire transitivity proof. At line 7, it introduces a new intro pattern
![. . .], which is an advanced version of the case analysis [. . .]: not only does it destruct the
structure on top of the proof stack, but also does so for its nested structures. For instance, the
second occurrence of ![. . .] will turn the goal (∃m, length m = length s ∧ w = mask m
s) → . . . into ∀ m, length m = length s → w = mask m s → . . . by destructing both
the existential quantifier (i.e., the dependent product) and its nested conjunction. The
remaining in-place rewrites (via ->) at the line 7 turn the goal into:

subseq (mask m2 (mask m1 s)) s (6)

In plain text, we have to show that if we apply mask to some sequence s with two arbitrary
masks, m1 and m2, the resulting sequences would be a subsequence of s. Line 8 advances the
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proof by induction on s, after generalising the goal over m1 and m2 and discharging the base
case with //, which implicitly uses the rewrites allowed by the definition of mask.

Next, line 9 performs the case analysis on m1. When it is empty, goal (6) becomes
subseq [] s, which can be automatically reduced to True by employing the reflection
between subseq and subseqb. The case when m2 is empty is handled automatically in a
similar fashion at line 14. We are now left with the following two remaining goals:

If m1 is non-empty and its first element is false (lines 11-12), then after all simplifications,
goal (6) is reduced to subseq (mask m2 (mask m1 s)) (x :: s), where x is a head of
the initial list s. Here we employ the induction hypothesis IHs1 at line 11, to state that
mask m2 (mask m1 s) is a subsequence of s, which means that mask m2 (mask m1 s)
is just mask m s, for some mask m. To finish the proof we instantiate the existential
quantifier in the definition of subseq by taking false :: m, which, when applied to
x :: s produces exactly mask m s (line 12).
If the first element of m1 is true, we perform case analysis on m2 (line 14), dispatching the
empty case in a way similar to dealing with m1 at line 9. When m2’s first element is also
true is trivial as in this case neither of the masks removes the head of s and our goal will
simplify to subseq (x :: mask m2 (mask m1 s)) (x :: s) and then, by reflection, to
subseq (mask m2 (mask m1 s)) s, which is trivially implied by the induction hypothesis.
All this is done by //= at the end of line 14. Finally, the case when m2’s head is false
(lines 15-16) is similar to the proof at lines 11-12.

The proof in Fig. 8 comes from our case study: migrating the MathComp library seq from
Coq/SSReflect to Lean. In Sec. 4.1 we will further elaborate on this mechanisation effort.

3 Implementing LeanSSR using Lean Metaprogramming

In this section we shed light on the implementation of LeanSSR, which makes extensive
use of Lean’s metaprogramming facilities. Despite the abundance of available tutorials on
implementing tactics in Lean, it still took significant effort to understand how to compose
different features to achieve the desired behaviour, following examples from the Lean Metapro-
gramming Book [22], several research papers [24, 29], Lean source code, and online meetings
with Lean developers. This makes us believe that our report on this experience might be of
interest even for seasoned Lean users who consider developing their own tactics.

Besides the new LeanSSR-specific tactics, such as elim, scase, sapply, etc., the three
essential enhancements made by LeanSSR over the vanilla Lean tactic language are:
1. Intro patterns: the set of commands that can follow =>
2. Rewrite patterns: the set of commands that can follow srw
3. Revert patterns: the set of commands that can follow :

We refer to those commands as patterns because they are meant to (partially) match some
part of the goal. The first set, i.e., intro patterns, includes ?, *, [.. | . . . | ..], etc. The
second set, rewrite patterns, includes eq, [i j . . .]eq, -[i j . . .]eq, etc, where eq is an
arbitrary equality fact. For the sake of space, we do not detail revert patterns in this paper,
but they are fully documented in the README file of the accompanying code repository [8].

The characterisation of the three pattern categories is non-exclusive: some LeanSSR
commands, e.g., // and /==, can be used both as intro patterns (following =>) and rewrite
patterns (following srw). To avoid code duplication, those “last-mile automation” commands
themself form a set of automation patterns that are implemented separately and then
registered to work in positions of both intro and rewrite patterns.
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clear patterns & arbitrary tacticslast-mile automation (§3.1)

revert patternsrewrite patterns (§3.3)intro patterns (§3.2)

Fig. 9. High-level structure of LeanSSR

An informal depiction of LeanSSR
patterns can be found in Fig. 9. Each
box stands for a separate set of pat-
tens, the arrows denote the depend-
encies between those sets. In Sec. 3.1–
3.3, we discuss the implementation of
the components highlighted by grey
boxes, concluding with a discussion on LeanSSR support for computational reflection in
Sec. 3.4. We do not assume the reader to be familiar with metaprogramming in Lean and
will explain the required notions as we progress with our presentation.

3.1 Syntax, Macros, and Elaboration for the Last-Mile Automation
We start by discussing the three key features of Lean metaprogramming essential for our
LeanSSR embedding: (1) syntactic categories, (2) macro-expansion, and (3) elaboration rules,
using the implementation of automation patterns as an example. The implementation is
shown in Fig. 10. At the high level, we first define a syntax for a sequence of such patterns
(lines 1-8), then tell Lean how to execute such a sequence (lines 10-22), concluding with the
definition of sby tactical. More detailed explanation of the code follows below.

1 declare_syntax_cat ssrTriv
2 syntax "//" : ssrTriv
3 syntax "/=" : ssrTriv
4 syntax "/==" : ssrTriv
5 syntax "//=" : ssrTriv
6 syntax "//==" : ssrTriv
7 declare_syntax_cat ssrTrivs
8 syntax (ppSpace colGt ssrTriv)* : ssrTrivs
9

10 elab_rules : tactic
11 | ‘(ssrTriv| /=) =>
12 run ‘(tactic| try dsimp)
13 | ‘(ssrTriv| /==) =>
14 run ‘(tactic| try simp)
15 | ‘(ssrTriv| //) => . . . -- omitted

16 macro_rules
17 | ‘(ssrTriv| //= ) => ‘(ssrTrivs| /= // )
18 | ‘(ssrTriv| //==) => ‘(ssrTrivs| /== //)
19
20 elab_rules : tactic
21 | ‘(ssrTrivs| $ts : ssrTriv *) =>
22 for t in ts do allGoals $ evalTactic t
23
24 elab sby:"sby " ts : tacticSeq : tactic => do
25 evalTactic ts
26 unless (<- getUnsolvedGoals).length = 0 do
27 allGoals $ run ‘(ssrTriv| //)
28 unless (<- getUnsolvedGoals).length = 0 do
29 throwErrorAt sby "No applicable tactic"
30

Fig. 10. Implementing of last-mile automation in LeanSSR using Lean metaprogramming.

Line 1 defines a syntactic category called ssrTriv for the LeanSSR automation patterns.
One can think of a syntactic category as of a set of syntax expressions grouped together
under a single name, for which interpretations can be given. Next, lines 2-6 define elements
of this category: //, /=, /==, //= and //==. At line 7, we define yet another syntax
category ssrTrivs for sequencing automation patterns. Elements of this category are
iterated sequences of ssrTriv separated with a space ppSpace. To ensure that Lean does
not try to parse the next line after a sequence of the patterns ssrTriv as a its continuation,
we also insert the colGt element, which allows for line breaks, but only if the column number
of the pattern on a new line is greater than the column number of the last pattern on the
line above, in the spirit of Landin’s Offside Rule [15].

Having defined the syntax for the automation pattern, we proceed to ascribe semantics
to it. Lines 10-15 give a meaning to basic automation patterns by using Lean’s standard
mechanism of elaboration rules via the elab_rules directive. Each elaboration rule maps
a piece of a syntax into an execution inside Lean’s TacticM monad [4, §8.3], thus defining
a tactic in terms of other Lean tactics, with access to the global proof state. For example,
/= is elaborated into executing the standard try dsimp tactic (lines 11-12). The remaining
automation patterns, //= and //== are defined in terms of the more primitive elements of
ssrTriv. This is done using Lean’s rules for macro-expansions, following the macro_rules
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directive. Macro-expansion rules in Lean map elements of syntax into executions within
the MacroM monad, returning another element of syntax as a result. Those rules are applied
by the Lean interpreter after the parsing stage, but before the elaboration stage. Here, we
simply expand //= to /= //, and //== to /== //, as shown at lines 16-18 of Fig. 10.

Since both //= and //== are represented as elements of the ssrTrivs category, we have
to tell Lean how to elaborate them as well. For the sake of demonstration, we are going to
do it by employing one of the most powerful tools in Lean’s metaprogramming toolbox: the
evalTactic directive. This directive takes an arbitrary piece of syntax and tries to elaborate
it into a sequence of tactics to be executed, using a set of macro-expansion and elaboration
rules available in the dynamic context, i.e., the rules available at the usage site in a particular
proof script. We will get to experience evalTactic in its full glory in Sec. 3.2. For now,
let us highlight one of its most useful features: annotating each token in the given syntax
with a correspondent proof state. That is, when elaborating and executing its argument,
evalTactic saves the goal before and after executing each token, allowing for the interactive
fine-grained proof state exploration we presented in Sec. 2.4.

Finally, lines 24-30 implement the sby tactical (Sec. 2.5). Line 24 defines both its syntax
and elaboration using the elab directive. The tactical starts with the string “sby” (its
position in a concrete syntax tree is bound as sby), followed by a sequence of tactics ts.
We first run this tactic sequence (line 15), then, unless it has solved all goals, we run //
(lines 26-27). Otherwise, if there are unsolved goals, an error is reported at the sby position.

3.2 Intro Patterns, Modularity, and Extensibility
Let us now briefly go through the high-level structure of the implementation of intro patterns.
While to a large extent similar to that of last-mile automation, this part of our development
showcases two new noteworthy aspects of LeanSSR internals. First, we will demonstrate the
modular nature of pattern definitions by showing how the intro pattens incorporate those for
automation. Second, we will show how the intro patterns that come with LeanSSR can be
easily extended for domain-specific proofs, thus addressing claim (3) from Sec. 1—an aspect
of our implementation made possible by the dynamic nature of the evalTactic directive.

1 declare_syntax_cat ssrIntro
2 syntax ssrTriv : ssrIntro
3 syntax ident : ssrIntro
4 syntax "?" : ssrIntro
5 . . .
6 declare_syntax_cat ssrIntros
7 syntax (ppSpace colGt ssrIntro)* : ssrIntros
8
9 elab_rules : tactic

10 | ‘(ssrIntro| $t:ssrTriv) => evalTactic t
11 | ‘(ssrIntro|$i:ident) =>
12 run ‘(tactic| intro $i:ident)
13 | ‘(ssrIntro| ?) =>
14 run ‘(tactic| intro _)
15 . . .

16 elab_rules : tactic
17 | ‘(ssrIntros| $is:ssrIntro*) =>
18 for i in is do allGoal $ evalTactic i
19
20 elab t:tactic "=> " is:ssrIntros : tactic =>
21 do evalTactic t; evalTactic is
22 . . .
23
24 macro_rules
25 | ‘(ssrTriv| //) => ‘(tactic| omega)
26 . . .
27 syntax "!" : ssrIntro
28 elab_rules : tactic
29 | ‘(ssrIntro| !$i:ident) =>
30 run ‘(tactic| ext)

Fig. 11. Implementation of LeanSSR intro patterns and their extensions.

Fig. 11 presents a fragment of the implementation of intro patterns for LeanSSR. Following
the template outlined in Sec. 3.1, it defines the syntax for a single intro pattern (lines 1-6)
and multiple intro patterns (lines 5-7). Now, to allow for last-mile automation within intro
patterns, we only have to explicitly add line 10, which, intuitively, says: once you meet a
ssrTriv inside some ssrIntro, just handle it with the already defined macro/elaboration
rules. Lines 11-14 provide examples of an intro pattern elaboration rule: a constant intro-
duction with an explicit name i (lines 11-12) and with an autogenerated name (lines 13-14),
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handled using Lean’s intro tactic. Lines 16-18 handle a sequence of intro patterns. Finally,
a new tactic => is defined at lines 20-21 to allow use of intro pattens in a proof script.

Lines 24-25 of Fig. 11 show the first example of extensibility afforded by Lean metapro-
gramming: augmenting the automation pattern // to discharge arithmetic facts by calling
the standard omega tactic. This definition enhances the behaviour of the pattern in the
entire scope below the macro-expansion rule (keep reading to learn why it does not replace
the original behaviour of //). Another example of extensibility is presented at lines 27-30,
integrating a domain-specific tactic into LeanSSR patterns. The mathlib’s ext tactic auto-
maticallly applies extensionality axioms, e.g., turning a goal of the form f = g, where both
f and g are functions, into ∀ x, f x = g x, followed by introduction of x. We integrate it
into LeanSSR intro patterns by definining the syntax ! for it as a new ssrIntro pattern at
line 27, and by elaborating the ! pattern to the ext tactic at lines 28-30.

The desired effect in both scenarios outlined above is achieved by the two somewhat
non-obvious practices we follow in our implementation of LeanSSR patterns:
(a) The semantics of the patterns is implemented exclusively using the macro_rules and

elab_rules commands, while their evaluation is always done using evalTactic, which
is invoked from the definitions of pattern sequences, as appear in Fig. 10 as Fig. 11.

(b) Elaboration rules for each particular pattern are defined separately from others.
Following these practices makes it possible to extend LeanSSR with new macro_rules and
elab_rules in a modular fashion. To extend LeanSSR with a new pattern or add a new
behaviour, it suffices to just add a new elaboration/macro rule for it. The reason why it
works follows from the way evalTactic performs the bookkeeping of the macro/elaboration
rules and their application. Any new such rule is added at the top of a rule database
stack. Whenever evalTactic is invoked (e.g., when elaborating and executing a particular
sequence of intro patterns as per line 18 of Fig. 11), it will go through the stack of the saved
rules, starting from the top, until it either finds the first one that executes without errors
(i.e., without throwing an exception as in Fig. 10 at line 29), or exhausts the stack.3

In particular, in case of // supplied with the rule at the lines 24-25 of Fig. 11, evalTactic
will first try to expand it into omega. If omega executes without errors (this is only possible
if it solves the goal completely), evalTactic looks no further. If omega fails, leaving the
goal unchanged, evalTactic proceeds with the next option on the rule stack, i.e. the one
at line 15 of Fig. 10 (assuming no other registered rules for //). This is the reason why
lines 24-25 of Fig. 11 do not alter the behavior of // but augment it with omega.

3.3 Rewrite Patterns and Custom Environment Extensions
The implementation of LeanSSR rewrite patterns relies on yet another very useful feature of
Lean metaprogramming: custom environment state extensions. The need for environment
state extensions comes from the rather restrictive format of evalTactic, which takes only
one argument: the syntax of the tactic to elaborate and run. Therefore, the execution of a
tactic implemented via evalTactic can only depend on the general proof environment, i.e.,
the proof context and the set of all available definitions available at the point of its invocation.
So far, this has been sufficient for our needs to implement patterns for automation and
introduction that were “context-independent”. The behaviour of a useful tactic for rewriting
is a bit more complex, since this tactic is expected to take a rewrite location, i.e., a local
hypothesis or the goal (its default behaviour). While the location of a rewrite is accessible

3 It is a good practice to put elaboration into tactics, which either fully solve the goal or fail otherwise,
closer to the top of the stack, so they would not be preempted by elaboration into tactics that never fail.
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1 declare_syntax_cat ssrRw
2 syntax ssrTriv : ssrRw
3 syntax term:max : ssrRw
4 declare_syntax_cat ssrRws
5 syntax (ppSpace colGt (ssrRw))* : ssrRws
6
7 abbrev LocationExtState := Option
8 (TSyntax ‘Lean.Parser.Tactic.location)
9

10 initialize locExt :
11 EnvExtension LocationExtState ←
12 registerEnvExtension (pure none)

16 elab_rules : tactic
17 | ‘(ssrRw| $t:ssrTriv) =>
18 evalTactic t
19 | ‘(ssrRw| $i:term) => do
20 let l <- locExt.get
21 run ‘(tactic| rw [$i:term] $(l)?)
22 . . .
23
24 elab "srw" rs:ssrRws l:(location)? : tactic => do
25 locExt.set l
26 evalTactic rs
27

Fig. 12. Implementing rewrite patterns by passing the rewrite location in a local state extension.

at the level of the entire tactic command, it cannot be directly passed to evalTactic
when elaborating each individual rewrite pattern, as the pattern itself is evalTactic’s sole
argument. Custom environment state extensions solve this issue by providing access to
additional state that can be used to store such data when elaborating a top-level command,
making its accessible for the elaboration rules of its inner components (i.e., the patterns).

To demonstrate the use of this technique, Fig. 12 shows an implementation of a restricted
version of LeanSSR rewriting, which only supports rewrites of the form:

srw Eq1 // Eq2 Eq3 // . . .

In other words, it only allows for rewriting with equality facts (i.e., Eq1, Eq2, etc.) and for
employing last-mile automation to solve the generated sub-goals. Importantly, our example
also allows for rewriting at a specified hypothesis H from the local context using srw . . . at H
syntax. The syntactic category for rewrite patterns is defined at lines 1-5 of Fig. 12. It
includes automation (line 2) and ordinary Lean terms (line 3). Preparing to pass the rewrite
location around as an additional state component, we first define a type of the state extension
LocationExtState (lines 7-8). It is an option, where some . . . denotes a local hypothesis
to rewrite at, and none stands for the goal. Next, the initialize command registers the
custom state component of the type LocationExtState with the name locExt, storing none
to it as a default value (lines 10-12). Fast-forward to lines 24-26, the elaboration rule for srw
first sets the value locExt to the optional argument l, i.e., the hypothesis passed after at or
the goal, if that part is omitted. Finally, the elaboration rule for named rewrite patterns
(i.e., equality facts) at lines 19-21 first fetches the location from the locExt component of
the extended state, and then executes Lean’s native rewrite tactic rw at that location.

3.4 Computational Reflection via Type Classes
We conclude this section by discussing the implementation of computational reflection in
LeanSSR via Lean type classes and its interaction with Decidable instances.

Lines 1-4 of Fig. 13 provide the definition of the Reflect predicate adopted almost
verbatim from SSReflect (we will explain the outParam keyword below). Lean users can
notice that Reflect is very similar to Decidable with the only difference being that the
former mentions the Boolean representation of the decidable predicate explicitly. The
#reflect command at line 10 will use this explicit Boolean representation b to generate
reduction/rewrite rules for the respective predicate P. This simplification machinery for
propositions is generated from their corresponding symbolic counterparts in two steps:
(i) The reduction principles of symbolic representations are retrieved as quantified equalities.
(ii) Boolean functions in those equalities are replaced with their corresponding propositions.
Step (i) comes “for free”: to partially evaluate recursive definitions, Lean automatically
generates lemmas in the form of quantified equalities representing the available reductions.
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1 class inductive Reflect (P : Prop) :
2 (b: outParam Bool) -> Type
3 | T (_ : P) : Reflect P true
4 | F (_ : ¬ P) : Reflect P false
5
6 theorem toPropEq (_: b1 = b2)
7 [Reflect P1 b1] [Reflect P2 b2] :
8 P1 = P2 := . . .
9

10 elab "#reflect" P:term b:term : command => . . .

11 macro "reflect" : attr => ‘(attr| default_instance)
12 @[reflect] instance tP : Reflect True true := . . .
13 @[reflect] instance : Reflect False false := . . .
14 @[reflect] instance [Reflect P1 b1] [Reflect P2 b2]
15 : Reflect (P1 ∧ P2) (b1 && b2) := . . .
16 @[reflect] instance [Reflect P1 b1] [Reflect P2 b2]
17 : Reflect (P1 ∨ P2) (b1 || b2) := . . .
18 . . . -- other basic reflect predicates
19
20 instance [Reflect P b] : Decidable P := . . .

Fig. 13. A fragment of computational reflection implementation in LeanSSR.

For example, for the evenb definition from Fig. 7 in Sec. 2.6 Lean will generate tree lemmas:

eq1: evenb 0 = true eq2: evenb 1 = false
eq3: ∀ n, evenb (n + 2) = evenb n

Those lemmas are then implicitly used by the simp and dsimp tactics in Lean proofs.
With all those equalities at hand, step (ii) is achieved with the help of the toPropEq

lemma (lines 6-8) that derives the equalities on propositions out of equalities on their Boolean
counterparts. For example, applying toPropEq to the quality eq1 above will give us the
equality even 0 = True, assuming we also somehow synthesise its two implicit Reflect
instance arguments. The synthesis is enabled by the following LeanSSR components.

The first one is a library of Reflect-lemmas connecting standard logic connectives, such
as ∧ and ∨ with their computational counterparts, i.e., && and ||. The need for those lemmas
arises when we need to synthesise a propositional version of a symbolic expression that does
not have an application of the function in question at the top level. In particular, while
the left-hand side of all retrieved equalities is always a function applied to some arguments
(e.g., evenb (n + 2)), the right-hand-side might be an arbitrary expression containing other
symbolic logical constants and connectives. The various Reflect-lemmas (lines 12-18 of
Fig. 13) provide recipes for synthesising proofs for the corresponding logical counterparts in
a way similar to type class instance resolution in Haskell. LeanSSR provides a collection of
such lemmas, and the user can add their own, extending the reflection in a modular fashion.

Alas, the type class resolution mechanism of Lean will not immediately work as desired.
For example, when we apply toPropEq to eq1, it will have to work out two instantiations
(i.e., proofs): for Reflect ?P (evenb 0) with ?P := even 0 and for Reflect ?Q true
with ?Q := True (line 12). By default, Lean’s algorithm for synthesising instances will fail
due to a simple reason: to construct an instance of, e.g., Reflect ?P (evenb 0) it must
know what that ?P is. That is, the algorithm will only attempt to synthesise an inhabitant
for a fully instantiated type class signature, but not for the one that has variables. To fix this,
we use the mechanism of default instances, i.e., proof terms that are available for instance
search even when not all type class arguments are known [5, §4.3]. For example, marking
tP : Reflect True true as a default instance will make the type class resolution algorithm
aware of it, thus, finding a suitable instantiation for ?Q in the process. For readability,
LeanSSR provides a reflect notation for the default_instance attribute, so that Reflect
instances can be marked as default ones simply by tagging them with @[reflect].

The last bit of our implementation is a link between Reflect and Decidable. Once a
Reflect instance for a logical predicate P is provided, LeanSSR also generates its decidable
instance (line 20 of Fig. 13), e.g., to use this P in any position that requires a Boolean
expression. Marking the parameter b of Reflect as outParam (line 2) is essential for this: it
tells the instance search algorithm that b is not required for finding the instance (since P
already provides enough information), and should be treated as the output of the synthesis.
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1 Lemma subseq_trans: transitive subseq.
2 Proof.
3 move=> _ _ s /subseqP [m2 _ ->] /subseqP [m1 _ ->].
4 elim: s m1 m2 => [*|x s IHs]; first by rewrite !mask0.
5 case=> [*|[] m1 m2]; first by rewrite !mask0.
6 { case: m2=> [/=|[] m2] //; first by rewrite /= eqxx IHs.
7 case /subseqP: (IHs m1 m2) => m sz_m ?; apply/subseqP.
8 by exists (false :: m); rewrite //= sz_m. }
9 case/subseqP: (IHs m1 m2)=> m sz_m ?; apply/subseqP.

10 by exists (false:: m); rewrite //= sz_m.
11 Qed.

Fig. 14. SSReflect proof of the theorem in Fig. 8b. Parts not needed in LeanSSR are highlighted.

4 LeanSSR in the Wild: Case Studies

In this section, we showcase two examples that support our claims from Sec. 1, by demon-
strating LeanSSR’s expressivity compared to Coq/SSReflect and to vanilla Lean, highlighting
the more compact proof scripts we obtain, as well as the overall usability of our approach.

4.1 Migrating MathComp Sequences to LeanSSR
To evaluate LeanSSR against SSReflect, we ported a small subset (approximately 10%) of
the finite sequences file from the Mathematical Components library Coq [18], amounting to
31 definitions, 72 theorems, and 3 reflection predicates. As the logics of Lean and Coq are
similar, and MathComp is implemented in SSReflect, which is syntactically very similar to
LeanSSR, most proofs can be translated almost mechanically, with minimal changes.

Our proofs are nonetheless more compact than the originals for two reasons: (a) the user
does not need to explicitly switch between logical and symbolic representations of the goal
(claim 2) and (b) many rewrites can be performed by LeanSSR’s simplification mechanism,
due to its extensibility (claim 3), and do not need to be invoked manually. A representative
example can be seen in Fig. 14, which shows a SSReflect proof (slightly modified from the
original for presentation purposes) of the fact that the subsequence relation is transitive.
The LeanSSR equivalent was shown previously in Fig. 8b. The Lean version is more compact
as it requires neither the explicit invocations of the reflection predicate (highlighted in red
in Fig. 14) nor various trivial rewrites (highlighted in orange ), which can be performed
automatically by LeanSSR’s powerful and extensible // automation. Overall, this amounts
to a reduction in half of the size of each line of proof, and we argue, to a reduction of the
cognitive effort required of the user, who can now focus on the essential aspects of the proof,
delegating trivial details to automation. Indeed, many simple statements can be proven in
LeanSSR by elim: s=>//=, reminiscent of the induct-and-simplify tactic of PVS [21,28].

4.2 Refactoring mathlib
To evaluate LeanSSR against proofs in mathlib [19], we ported a few facts about cardinalities
of finite sets. Fig. 15 presents two proofs of a subgoal for the card_eq_of_bijective lemma
from mathlib: the original proof and one ported to LeanSSR. The subgoal states that for
a bijective function f from a range of all natural number less than n, each element in this
range has a pre-image w.r.t. f. Notably, mathlib proofs frequently build a proof term
explicitly, rather than via tactics. In cases like the one in Fig. 15, such manual proof term
construction tends to be more concise than the respective proof script, hence the ubiquity
of this mechanisation style in mathlib. The same proof ported to LeanSSR is shown in
Fig. 15b. Here, the ⟨ .. | . . . | .. ⟩ pattern is similar to [ .. | . . . | .. ], but instead
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1 example
2 (hf : ∀ a ∈ s, ∃ i (h : i < n), f i h = a)
3 (hf’ : ∀ i (h : i < n), f i h ∈ s) :
4 ∀ (a : α), a ∈ s ↔
5 ∃ i, ∃ (hi : i ∈ range n), f i _ = a :=
6 fun a =>
7 ⟨fun ha =>
8 let ⟨i, hi, eq⟩ := hf a ha
9 ⟨i, mem_range.2 hi, eq⟩,

10 fun ⟨i, hi, eq⟩ => eq ▷ hf’ i (mem_range.1 hi)⟩

(a) Original mathlib proof script

1 example
2 (hf: ∀ a ∈ s, ∃ i (h : i < n), f i h = a)
3 (hf’ : ∀ i (h : i < n), f i h ∈ s) :
4 ∀ (a : α), a ∈ s ↔
5 ∃ i, ∃ (hi : i ∈ range n), f i _ = a :=
6 by move=> a
7 ⟨/hf ![i /mem_range ? <-] // |
8 ![i /mem_range /hf’ /[swap]->] //⟩

(b) LeanSSR proof script

Fig. 15. Two proofs of the same fact from mathlib: the vanilla one and the one in LeanSSR.

of matching on the top element of the goal stack, it applies the constructor tactic to the
goal, and runs nested tactics on the generated subgoals. The main difference between those
two proofs is that instead of the somewhat awkward backward-style reasoning with explicitly
constructed proof terms (e.g., line 10 in Fig. 15a), LeanSSR allows for natural forward-style
proofs using LeanSSR views (cf. Sec. 2.5). Specifically, the mathlib proof of the second
component of the bi-implication from the conclusion (i.e., right-to-left) first destructs the
hypothesis ∃ i, ∃ (hi : i ∈ range n), f i _ = a, and then gradually reduces the goal
(a ∈ s) to the assumption hi : i ∈ range n by first rewriting eq, then applying hf’ and
finally mem_range : n ∈ range m ↔ n < m. In contrast,the LeanSSR proof adapts hi to
solve the goal automatically at line 8 of Fig. 15b, by first applying mem_range to its second
existential, then hf’ to the result, and then rewriting eq in it via the special form of the
view pattern /[swap], followed by ->.

We claim that the presented LeanSSR proof has certain advantages compared to the one
from mathlib. First, views will automatically infer dependent arguments when applying a
lemma, e.g., i in hf’ i mem_range.1 hi at line 10 of Fig. 15a. Second, LeanSSR organically
incorporates last-mile automation (using // and other automation patterns) to the forward-
style proof script, thus, sparing the user the effort of building yet another collection of
proof terms to dispatch the subgoals. Finally, unlike the proof terms constructed holistically,
LeanSSR proofs are interactive: one can check the intermediate subgoals by simply pointing
to the specific location in the text buffer, resulting in a better overall proof experience. In
summary, our experiment demonstrates that LeanSSR proofs are not only shorter compared
to the original mathlib ones, but also easier to follow and debug. The latter aspect is crucial
for the long-term maintainability of large formal Lean developments such as mathlib.

5 Related Work and Conclusion

Prior to our effort, Lean 4’s metaprogramming facilities have been used to implement white-
box automation via proof search in the popular Aesop package [17]. In particular, mathlib [19]
uses Aesop to build domain-specific solvers such as measurability and continuity, and
uses metaprogramming extensively to define its own tactics and automation facilities (e.g.,
split_ifs and linarith). Closer in spirit to our work, König developed a proof interface
in Lean in the stlye of Iris proof mode [13], featuring a specialised tactic language for proofs
in Separation Logic [14]. In Lean 3, Limperg built an induction tactic that is friendlier for
novices by giving the most general induction hypothesis [16].

We believe that our implementation of LeanSSR provides an instructive example of using
Lean 4 metaprogramming features for implementing a non-trivial tactic language, and adds
one more arrow to the quiver of tools and techniques for proof construction in Lean.
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