
Practical Formal Methods for Distributed
Systems

George Pîrlea

October 13, 2021

National University of Singapore

Contents

Contents ii

1 Introduction 1
1.1 Distributed Systems Are Buggy . 2

1.1.1 Protocols Are Incorrect . 2

1.1.2 Implementations Are Buggy . 7

1.2 Formal Methods Can Help . 11

1.3 Current Challenges . 12

1.4 Practical Methods . 13

1.5 Contributions . 14

2 State of the Art 15
2.1 Testing and Model Checking . 15

2.1.1 Fault-Injection and Random Testing 16

2.1.2 Checking Temporal Logic Specifications 19

2.1.3 Connecting Models to Implementations 21

2.2 Interactive Verification . 22

2.2.1 Refinement Using Verified System Transformers 22

2.2.2 Compositional Reasoning With Separation Logic 23

2.2.3 Linking Refinement and Separation Logic 23

2.3 Semi-Automated Verification . 24

2.3.1 Deductive Verification of TLA Specifications 24

2.3.2 Safety and Liveness Proofs for Implementations 24

2.3.3 Finding Invariants by Interactive Generalisation 25

2.4 Automated Verification . 27

2.4.1 Property-Directed Reachability . 27

2.4.2 Incremental Inference of Universal Invariants 29

2.4.3 Data-Driven Invariant Learning . 30

2.4.4 Invariants with Quantifier Alternations 32

2.5 Gaps in the State of the Art . 34

3 Preliminary Work 37

4 Towards Automated Reasoning 39
4.1 Guided Invariant Discovery . 39

4.2 Challenges of EPR Encoding . 45

5 Conclusion 49

Bibliography 50

[Knu74]: Knuth (1974), ‘Com-

puter programming as an art’

1: In industry, formal methods

have a reputation of requiring

extraordinary efforts to verify

even simple code [New+15]. To

be considered practical, formal

techniques need to scale to real-

istic systems with a reasonable

amount of effort.

2: Integrating with existing soft-

ware development workflows is

key for industry adoption of for-

mal methods [Rei+20].

Introduction 1
Computer programming is art, science, and engineering

rolled into one [Knu74]. Nowhere is this more apparent than

in systems programming, where practitioners juggle concerns

of architectural elegance, empirical validation, and low-level

implementation all at once.

In this work, we are interested in distributed systems, which

have to cope with the combination of (partial) failure, concur-

rency, and fickle latency. We seek to answer the question:

How to design, implement, monitor, and main-

tain distributed systems such that we can have

formal assurance about their correctness?

First, we are concerned with real systems in all their com-

plexity. Toy examples and models will serve only as stepping

stones towards building confidence in practical systems.

Second, we want the techniques we use to require as little hu-

man effort and ingenuity as possible.
1
Automated techniques

are preferable to manual ones.

Third, we are interested in the entire system lifecycle: its de-

sign, implementation, service, and ongoingmaintenance and

evolution. Many techniques apply only to abstract models,

not concrete code, or offer guarantees about the code without

reference to the environment it is executing in, or expect

that the code is generated from the specification rather than

written separately, or are brittle in the face of changes. We

want assurance that touches the full development cycle.
2

Finally, we want formal assurance. We should be able to

precisely describe our level of confidence and justify it on a

mathematical basis.

This last desideratum requires some motivation. Surely guar-

antees are desirable, but why do we need formal assurance?

1 Introduction 2

Table 1.1: Errors found in distributed protocols.

Protocol Reference Violation Counter-example

Chord [Sto+01; LBK02] liveness
a

[Zav12; Zav17]

Pastry [RD01] safety [AMW16; AMW18]

Generalised Paxos [Lam05] non-triviality
b

[SS10]

FaB Paxos [MA05; MA06] liveness [Abr+17]

Multi-Paxos
c

[CGR07] safety [Mic+17]

Zyzzyva [Kot+07; Kot+09] safety [Abr+17]

CRAQ [TF09] safety
d

[Whi20]

JPaxos [Koń+11] safety [Mic+17]

VR Revisited [LC12] safety [Mic+17]

EPaxos [MAK13] safety [Sut20]

EPaxos [MAK13] safety [Whi21]

Raft [OO14] liveness [Hoc14]

Raft [Ong14] safety [AZ15; Ong15]

Raft [OO14; Ong14] liveness [HA20; JHM21]

hBFT [DPL15] safety [SKD19]

Tendermint [Buc16] liveness [CV17]

CAESAR [Aru+17] liveness [Ene+21]

DPaxos [NAE18] safety [Whi+21]

Sync HotStuff [Abr+19] safety & liveness [MC19]

Gasper [But+20] safety & liveness [NTT21]

a
Eventual reachability is Chord’s key correctness property.

b
Acceptors might accept commands that have not been proposed.

c
As described in Paxos Made Live.

d
Client reads might fail due to incorrect garbage collection.

3: Throughout this report, we

distinguish protocols and systems.
A protocol is an abstract descrip-

tion of an algorithm, whereas a

system is its practical instantia-

tion, consisting of code deployed

in a real execution environment.

1.1 Distributed Systems Are Buggy

To show the benefit of formal methods, it helps to review a

few episodes that illustrate the pitfalls of informal and semi-

formal reasoning about distributed protocols and systems.

1.1.1 Protocols Are Incorrect

It is widely accepted that distributed protocols
3
are difficult

to reason about. But few appreciate how often even domain

experts make mistakes. To give the reader some intuition,

Table 1.1 presents a (non-exhaustive) list of errors found in

the descriptions of notable protocols.

1 Introduction 3

[Sto+01]: Stoica et al. (2001),

‘Chord: A Scalable Peer-to-peer

Lookup Service for Internet Ap-

plications’

4: In practice, nodes keep track

of a successor list rather than a

single successor. The key operat-

ing assumption in Chord is that

every node has at least one live

node in its successor list.

5: A leaving node passes respon-

sibility for its keys to its succes-

sor, whereas a joining node re-

ceives responsibility from its suc-

cessor. No other changes are nec-

essary.

6: Formally, eventual reachability
says that in any execution state,

if there are no subsequent joins

or failures, then eventually the

network will become ideal (an

ordered ring) and remain ideal.

7: A is a parameter. Longer lists

let the protocol tolerate more

concurrent reconfigurations.

These protocols were published by experienced researchers,

and some came with detailed correctness arguments, but all

had errors. We describe the three most instructive ones:

Chord. Chord is a peer-to-peer lookup protocol that imple-

ments a distributed hash table [Sto+01]. The protocol maps

keys to values by maintaining—without a central authority—

a mapping between each key and the node responsible for

storing the key’s value.

Concretely, each node is identified by a hash of length 2
<

bits, and nodes organise themselves in a ring topology: each

node is succeeded by the node with the next higher hash

value (mod 2
<
).
4
Keys are assigned to nodes by hashing. The

key’s value is held by the node with the smallest identifier

that is equal to or greater than the key’s hash.

As nodes leave and join the network, they maintain the ring

topology and move values around as needed to keep the

mapping consistent.
5
Chord’s key correctness property is

eventual reachability—given ample time, as long as no further

nodes join or leave, the protocol will eventually repair all

disruptions in the ring structure [Zav12]. The protocol has

to uphold this property even in the presence of failures,

concurrent leaves and joins, and message delays.

In a separate paper analysing Chord’s properties, the authors

identify a set of invariants that must hold for Chord to be

correct in the sense of eventual reachability [LBK02].
6

However, in subsequent work using the Alloy Analyzer

modelling tool, Pamela Zave showed that Chord does not

satisfy any of its claimed invariants [Zav12]. The root issue

is that during reconfigurations (due to joins or detected

failures), Chord nodes can update their successor lists in

ways that remove all live nodes—despite those nodes neither

failing nor leaving the network.

In follow-up work, Zave published a corrected version of

Chord, model-checked for all instances of up to = = 9 nodes

and successor lists of length up to A = 3 [Zav17].
7
Importantly,

1 Introduction 4

8: The second clause guarantees

the ring retains enough structure

to fix A disruptions.

9: Invariants capture an under-

standing of the protocol. Chord’s

invariants did not hold because

the protocol behaved differently

than its creators thought.

10: This story convinced engi-

neers at Amazon Web Services

(AWS) that formal methods can

be applied productively to real

distributed systems [New+15].

11: After failing, a node had to

wait a long time, until all refer-

ences to it in successor lists were

purged, before rejoining. This

was shown to be unnecessary.

12: An overlay network is built on
top of an existing network.

13: Typically, proximity is de-

fined in terms of number of net-

work hops between nodes.

14: For each prefix of length =,

the list containsnodeswith every

possible = + 1th digit (if such a

node is known).

15: To our knowledge, key con-

sistency, a.k.a. correct delivery,
has not been studied for Chord,

but eventual reachability implies

eventual key consistency.

this version has a simple inductive invariant, consisting of

only two clauses: (1) every successor list has at least one live

entry and (2) there are at least A+1 nodes that are not skipped

by any node’s successor list.
8

The Chord story shows how semi-formal reasoning about

even relatively simple protocols can be very wrong.
9
More-

over, it shows the benefits of tool-supported formal reasoning.
Zave credits the Alloy Analyzer—which allows model explo-

ration and shows concrete counter-examples—for allowing

her both to understand why the claimed invariants did not

hold and to discover the much simpler invariant behind the

corrected version of Chord [Zav17].
10

Due to formal methods, not only do we have more assurance

about Chord’s correctness, but we also have a better under-

standing of the protocol—the simple invariant shows exactly

what keeps Chord safe and, in fact, reveals that parts of the

original protocol were unnecessary.
11

Pastry. Pastry is a peer-to-peer overlay network
12

with a

built-in distributed hash table [RD01]. Pastry is similar to

Chord: it builds a ring based on node identifiers and places

each key at the node with the numerically closest identifier.

To route key requests to the appropriate node, Pastry also

builds a routing table using an application-specific proximity

metric.
13
The routing table of a node stores, for every prefix

in identifier space, a list of the closest nodes with identifiers

that match the prefix, where closeness is computed using the

proximity metric.
14
Nodes also store a list of neighbours in

identifier space and a separate list of neighbours according

to the proximity metric.

Using this information, Pastry nodes canperformhierarchical

routing, thus minimising the distance messages travel.

A desirable safety property for Pastry is key consistency—at

any time, there is only one node responsible for any key.
15
To

this end, nodes must maintain a consistent view of the ring

structure as participants join and leave the network.

1 Introduction 5

16: [Hae+05] notes that [CCR04]

does not maintain safety in the

presence of path failures, despite

being hardened against churn.

17: “[T]he new version has been

successfully run for multiple

days without any detected rout-

ing inconsistencies.” [Hae+05]

18: The error manifests without

any failures—concurrent joins

suffice. It is fixed by having each

node process only one join at a

time.

19: This was an incorrect change

to an incorrect protocol. Of-

ten, however, we see incorrect

changes to correct protocols—an

example is Zyzzyva, which tried

to optimise PBFT by adding spec-

ulation, but is unsafe [Abr+17].

Validating optimisations is an

important use-case for formal

methods in industry [New+15].

However, Pastry’s authors empirically observed that their

protocol does not guarantee key consistency under high

rates of churn [CCR04] or in the presence of asymmetric

connectivity [Hae+05] and devised enhancements to correct

these deficiencies [CCR04; Hae+05].
16
Concretely, Haeberlen

introduced a sub-protocol that manages ownership of keys

via the concept of leases—when a node joins, itmust explicitly

lease a portion of the key space before it can become active

and answer lookup requests; similarly, a failed node’s lease

expires and is negotiated among its neighbours [Hae+05].

Despite these changes being empirically validated,
17
they are

incorrect in a rather unfortunate way.

The hardened protocol [CCR04] could, when multiple nodes

attempt to join concurrently, end up with nodes having

inconsistent views of their neighbourhood. The new protocol

[Hae+05] does fix the specific issue that lead to inconsistent

views, but still fails to correctly handle concurrent joins—as

Lu showed by modelling both versions in TLA
+
[Lu13].

18

The lesson here is that, even if designers know that their pro-

tocol is incorrect, that does not necessarily mean they will be

able to develop a correct fix. Moreover, we see that empirical

validation is not sufficient to guarantee correctness.

Once again, tool-supported formal reasoning can give us assur-

ance that the changes we make to our protocols are indeed

correct (or show us that they are not).
19

Raft. Raft is a distributed consensus protocol, described as

more practical and easier to understand than Paxos [OO14].

Its key feature is a strong notion of leadership—log entries

only flow from leaders to backups and thus no log transfer

is needed during leader election. Moreover, Raft’s leader

election is very simple and surprisingly efficient [HM20].

Raft’s original description included a membership change

scheme called joint consensus, in which during the transition

from the old to the new configuration, agreement requires

majorities from both the old and the new cluster. This lets Raft

1 Introduction 6

20: To preseve safety, majori-

ties in the old and new clusters

should intersect in at least one

server.

21: When the old leader restarts,

three configurations (one old

and two new) are competing.

There is no guarantee that they

all intersect, so safety is compro-

mised.

22: A new configuration re-

quires a majority of the old con-

figuration to agree, but this is im-

possible since a majority has al-

ready agreed to the new leader’s

entry.

23: The Cloudflare blog post

calls the issue a Byzantine fail-

ure, but this is incorrect. Itwas an

omission failure (message loss),

which Raft should tolerate.

continue serving client requests during the transition, but is

complex and subtle [Ong14]. Indeed, the original version of

joint consensus was shown to have liveness issues [Hoc14].

Acknowledging the complexity of joint consensus, Ongaro

developed a simpler membership change algorithm that only

adds or removes one server at a time [Ong14].
20

However,

using TLA
+
, Amos and Zhang showed that this scheme

is unsafe if a leader fails during a configuration change

and comes back online as a newly-elected leader attempts a

different change [AZ15; Ong15].
21
To solve this issue, a new

leader should not propose a configuration change until it

commits an entry in its term—this ensures that it knows

all previously committed configuration changes and that no

uncommitted conflicting change can commit.
22

Once again, we see that simpler protocols are not necessar-

ily easier to reason about—the simple membership change

scheme was unsafe. In a similar vein, Raft’s simple leader

election scheme also had errors. In unusual network con-

ditions, when the cluster is only partially connected, Raft

leader election was shown not be live even when a major-

ity of the cluster can communicate [HA20]. This bug was

observed in production at Cloudflare and led to an outage

that lasted 6 hours and 33 minutes [LS20].
23

To avoid this

issue, candidates in Raft must run a trial election to test that

they can win before forcing the current leader to step down

and leaders must actively step down if they do not receive

heartbeats from a majority of the cluster [HA20; JHM21].

Lessons. We presented errors found in three protocols:

Chord, Pastry, and Raft. These show that reasoning about

distributed protocols is difficult and that even experts get it

wrong. Table 1.1 references many more mistakes. While we

do not have enough space to explain them, we hope that the

sheer number of errors discovered is enough to convince the

reader that mistakes in distributed protocols are very common.
We also saw that formal reasoning can help, and in Chapter 2

we will see precisely what current tools can and cannot do.

1 Introduction 7

24: E.g., cause data loss, data cor-
ruption, or otherwise make the

system behave incorrectly.

25: Gunawi et al. note that

designers prioritise availability

over reliability, likely because

users evaluate services based

on availability and performance

metrics rather than correctness,

which is harder to quantify.

26: Reported bugs might not be

a representative sample of all

bugs. Issues that do not lead to

outages ordata loss are less likely

to be detected in the first place.

27: Only 25% of the normal fail-

ures were caused by incorrect

error-handling. We should not

be hasty to generalise.

28: This code was never exer-

cised during testing. A test suite

with full line coverage would

have detected all these errors.

1.1.2 Implementations Are Buggy

It is not only protocols that are incorrect. Implementations

have bugs too, and much more often than protocols.

Bugs are common and have impact. In a comprehensive

study of six popular cloud systems, Gunawi et al. review
21,399 bug reports and perform a deep analysis of 3655 “vital”

issues that affected real system deployments [Gun+14]. They

find that 45% of bugs impact the reliability
24

of affected sys-

tems, 22% impact system performance, and 16% compromise

availability.
25

Moreover, about 5% of bugs, while not causing

data loss or corruption, produce data inconsistencies.

In the following, we review the major classes of distributed

system bugs identified in the literature.

Error handling. Yuan et al. manually reviewed 198 ran-

domly selected, user-reported failures
26

of popular dis-

tributed systems: Cassandra, HBase, HDFS, Hadoop MapRe-

duce, and Redis [Yua+14]. They find that failures arise espe-

cially when services are starting, particularly in long-running

clusters, and that 24%of failure scenarios involve nodes being

unreachable.

Yuan et al. distinguish between catastrophic failures, where

most or all users of the system experience an outage or data

loss, and non-catastrophic failures, where only a minority

of users are affected. Of the 198 sampled failures, 48 are

catastrophic and 150 are non-catastrophic.

All but one of the catastrophic failures in the sample were

caused by incorrect error-handling.
27

Of these, 43% were

caused by trivial mistakes in error-handling code, e.g., ignor-
ing errors or aborting execution due to non-critical exceptions

such as I/O errors, and 23% were caused by exception-

handling blocks that always crash.28 The remaining 34%were

complex bugswhere the developers did not anticipate certain

error scenarios.

1 Introduction 8

29: This suggests that regresion

testing can be very effective for

distributed systems.

30: These systemshave large test

suites and are widely used, so

commonerrors had alreadybeen

eliminated.

31: Node changes are reconfigu-

rations, node crashes, or restarts.

These are notoriously difficult to

handle and a common source of

errors in both protocols and sys-

tems. Indeed, all protocol errors

we reviewed in the previous sec-

tion were node-change errors.

32: Guarding systems gainst ar-

bitrary crashes is challenging.

The problem has been studied

formally for file system imple-

mentations [Che+15; Sig+16].

Out of the 198 failures, 77% are either deterministic or have

simple timing dependencies and therefore can be reproduced

by unit testing.
29

Non-deterministic bugs arise mostly due to

incorrect use of shared-memory concurrency.

The event sequences that led to these failures are relatively

complex, requiring multiple steps from a large space of

possibilities.
30

Nonetheless, while the space of possible steps

is large, 98% of the surveyed failures manifest with 3 or fewer

nodes and 90% require at most 3 steps [Yua+14].

Node changes. In a study reviewing only node-change

bugs,
31

Lu et al. identified 620 distinct node change bugs

and manually inspected 120 chosen at random [Lu+19]. They

analysed bugs in Cassandra, HBase, HDFS, Hadoop YARN

(the successor to MapReduce), and Zookeeper.

Restarts are the most common trigger for errors, accounting

for 68.2% of the surveyed bugs, followed by crashes at 18.7%

and graceful shutdowns at 11.6%, respectively. Lu et al. find
that node additions are rarely a source of errors for the

systems they look at—of the 620 bugs analysed, only 9 were

caused by starting new nodes.

Similar to Yu et al., they find that 85% of bugs are shallow,

requiring no more than 2 events to trigger.

In terms of root causes, Lu et al. describe 33.3% of the issues

as distributed concurrency bugs, resulting from unexpected

interleavings either between threads at a single node or across

nodes. Incorrect crash-recovery and restart code accounts for

36.7% of the bugs, while incorrect shutdown handlers are

responsible for 13.3% of errors. The remaining 16.7% of bugs

are system specific and difficult to clearly categorise.

Importantly, 45% of the analysed node-change bugs print

explicit errormessages and are thus easy to identify in system

logs, whereas 55% are silent.

In priorwork,Gao et al. specifically analysed bugs in the crash-

recovery mechanisms of distributed systems [Gao+18].
32

1 Introduction 9

33: In distributed concurrency

(DC), event interleavings arise

due to distributed execution and

message delays. Contrast with

local concurrency (LC), where

interleavings arise due to having

multiple threads of execution.

34: Intuitively, a distributed en-

vironment presents more oppor-

tunities for order violations.

Almost all of the inspected bugs involve 4 or fewer nodes and

87% of crash recovery bugs require a combination of no more

than three crashes and one reboot. However, such bugs are

difficult to find since they heavily depend on timing—crashes

must occur in specific system states to manifest as bugs.

Distributed concurrency. Concurrency is a major source

of errors in implementations of distributed systems, as de-

velopers have to reason about event interleavings not just at

a single node but across the entire cluster.

Leesatapornwongsa et al. review 104 distributed concur-

rency
33

bugs from four cloud systems, noting that such bugs

are difficult to find, as they often arise due to unexpected

interactions between multiple protocols, and in 47% of cases

lead to silent failures rather than overt errors [Lee+16].

They classify the conditions that trigger DC bugs into two cat-

egories: (1) order violations, where correct behaviour depends

on events happening in a specific order which is not observed

in practice, and (2) atomicity violations, where certain events

must execute independently but in practice they interfere

with each other.

Interestingly, while local concurrency errors are known to

mostly arise due to atomicity violations (roughly 70% of

LC bugs) [Lu+08], Leesatapornwongsa et al. observe that, in
the systems they study, distributed concurrency errors are

mostly caused by order violations [Lee+16].
34

Timeout problems. Timeouts are a common mechanism

for detecting and handling failures in distributed systems.

Analysing 156 timeout bugs in 11 cloud systems, Dai et al. find
that 40% of timeout-related bugs cause system unavailability,

33% cause specific jobs within the system to fail, 26% cause

performance degradation, and 2% cause data loss [Dai+18].

In terms of root causes, almost half of timeout bugs arise

because a timeout variable is misused, being set incorrectly,

1 Introduction 10

35: A complete partition sepa-

rates a cluster into disconnected

parts, whereas a network experi-

encing a partial partition is still

connected, but not in a clique

topology (i.e., all-to-all).

36: This might be a side-effect of

multiple-node partial partitions

being less common and thus less

likely to lead to bug reports.

37: We sawaprotocol-level error

of this kind in the Raft leader

election liveness issue, so this is

not entirely surprising.

not being updated during execution, being ignored, or being

wrongly reused by more than one timeout checking function.

A third of problems arise due to missing timeout checking,

whereas the rest are caused by incorrect handling of timeouts,

unnecessary timeouts, or clock drift.

Partial network partitions. Implementations of fault tol-

erance techniques are often inadequate, such that network

failures, especially if partial,
35

cause serious problems.

Conducting an in-depth study of 51 partial network partition-

ing failures in 12 cloud systems, Alfatafta et al. al found that

74.5% are catastrophic, either crashing the system or making

the system violate its guarantees, with data loss and unavail-

ability being the most common occurrences [Alf+20].

Worryingly, 84.3% of the failures are silent, not producing

any informative error message. Leader election is the most

commonly affected mechanism, followed by reconfiguration

and replication. However, 68.6% of the studied bugs required

three or fewer events to trigger, and all of themmanifest with

only a single-node partial partition.
36

Not all of these failures are caused by implementation errors,

however. Looking at the 72.5% of errors that were fixed,

Alfatafta et al. found that the majority, 56.8% required de-

sign changes in the protocol, i.e., they were protocol bugs.
37

Nonetheless, 43.2% of the fixed issues required only code

changes rather than fundamental redesigns [Alf+20].

File system faults. Disk faults are another source of errors.

While most distributed systems replicate data at multiple

nodes, implementations often fail to provide fault tolerance

against disk read and write errors.

Inspecting eight popular distributed storage systems, Gane-

san et al. found that file system faults at a single node can lead

to cluster-wide data corruption, as errors are propagated to

the entire cluster, or unavailability, as errors lead to node

crashes [Gan+17].

1 Introduction 11

38: The fact that, empirically,

most discovered implementation

bugs are shallow makes this

very attractive—although it is

not clear whether this observa-

tion is more a reflection of our

(in)ability to find bugs rather

than an intrinsic property of dis-

tributed systems.

[Fon+17]: Fonseca et al. (2017),

‘An Empirical Study on the Cor-

rectness of Formally VerifiedDis-

tributed Systems’

39: Fonseca et al. report spend-
ingmore than eight months search-
ing for bugs. In theirwords, “this

result suggests that these veri-

fied distributed systems correctly
implement the distributed sys-

tem protocols, which is particu-

larly impressive given the noto-

rious complexity of distributed

protocols” [Fon+17].

40: Studies in other application

areas confirm this pattern. For

instance, Yang et al. studied bugs

in C compilers. For CompCert, a

verified compiler, after about 6

CPU-years of testing, they found

an error in its unverified front-

end and an error caused by a

specification bug [Yan+11].

Lessons. Implementations of distributed systems are very
buggy, with hundreds of critical errors found in mature,

production-ready systems. Moreover, these bugs have varied

causes and can be difficult to find, reason about, and fix.

One can see, therefore, that it would be useful to have some

sort of formal assurance about implementations, e.g., at the
very least, certainty that certain classes of bugs are not

present or that shallow bugs do not exist,
38

and perhaps even

assurance that the implementation is entirely bug-free.

1.2 Formal Methods Can Help

We have already seen that formal reasoning tools can be used

to discover and fix errors in protocols. They can also help

with implementations, and to great effect.

Fonseca et al. studied the correctness of IronFleet [Haw+15],

Verdi [Wil+15], and Chapar [LBC16], three formally verified

distributed system implementations [Fon+17]. Through a

combination of code review and testing, they found 16 bugs

in these systems. The key finding, however, is that none of

these were in code that was verified.
39

Specifically, 11 bugs

were found in the so-called shim layer that handles the interac-
tion between the verified implementation and the operating

system, e.g., network communication and disk operations.

Verdi and Chapar have an unverified shim, written in OCaml,

in which Fonseca et al. found bugs. IronFleet’s shim, on the

other hand, is verified, and no bugs were discovered in it.

This shows that formal verification is in fact effective at

removing bugs from system implementations.

However, IronFleet had a serious specification error—its

Multi-Paxos implementation handled packet duplication

incorrectly and thus failed to provide exactly-once semantics

for client requests, and Dafny, the verification tool used

in IronFleet had two bugs that could manifest as incorrect

programs being reported as verified [Fon+17].
40

Similarly,

1 Introduction 12

41: Nonetheless, the safety bug

in the one-at-a-timemembership

change protocol was discovered

via model checking.

42: Verdi was developed over

18 months [Woo+16] and Iron-

Fleet required approximately 3.7

person-years [Haw+15].

43: It takes AWS engineers two

to three weeks to become pro-

ductive with TLA
+
[New+15].

44: This is in contrast to interac-

tive or semi-automated verifica-

tion approaches, which typically

do not give any assurance un-

til the effort is completed. Such

methods aremuchmore difficult

to adopt in industry [Rei+20].

Verdi [Wil+15], which includes a verified implementation of

Raft, did not catch any of the Raft protocol bugs we discussed

in Section 1.1.1, since it did not model cluster membership

changes or attempt to verify liveness.
41

The lesson is that so-called “correctness” guarantees should

be properly understood—verification certainly does remove

bugs, but specification errors and omissions are a real threat,

and similarly, verification tools with large trusted computing

bases (TCBs) should be treated with caution.

1.3 Current Challenges

Despite their benefits, many formal techniques struggle to

scale to industrial applications. For instance, the systems

Fonseca et al. reviewed [Fon+17] required years of expert

effort to formally verify and are, as things currently stand,

unused and largely unmaintainable.
42

Manual proofs do not

scale and even semi-automated reasoning is too expensive.

Faced with this reality, industrial actors have focused on

lightweight methods that do not involve proofs. The most

popular such method is model checking, which is widely

used in industry [New+15; Dem18; Lam18; Hal20; SZT21].

Model checking tools are easy for developers to learn
43

and

can be used to quickly experimentwith and validate potential

system designs. Moreover, models can be and in practice

often are connected to implementations via model-based

testing [Bor+21] and conformance monitoring [Hal20].

Such approaches do not completely eliminate bugs, as verifi-

cation methods do, but require much less manual effort and,

significantly, do not demand a large upfront investment—

they operate on a pay-as-you-go model [AT17; Bor+21], in

which the initial cost of adoption is low and increased assur-

ance is obtained by incremental effort.
44

However, even lightweight methods have issues. Besides not

offering strong guarantees, the most pressing problem not

1 Introduction 13

45: Another problem is check-

ing liveness, as opposed to safety.

Techniques to reason about live-

ness are under-developed.

[Bor+21]: Bornholt et al. (2021),

‘Using Lightweight Formal

Methods to Validate a Key-Value

Storage Node in Amazon S3’

[Chu+18]: Chudnov et al. (2018),

‘Continuous Formal Verification

of Amazon s2n’

46: O’Hearn identifies continu-

ous reasoning,whichmirrors the

continuous model of software

development practiced in indus-

try, as key to scaling formalmeth-

ods in practice [OHe18].

only for lightweight methods, but indeed for all types of

techniques is software evolution.45 As code changes, the speci-

fication must change as well, and in the case of interactive

and semi-automated verification methods, proofs must be

rewritten. This is difficult in an industrial setting, where the

developer who changes the codemight not have the expertise

(or motivation) to update the specification and proofs.

1.4 Practical Methods

In terms of validating implementations in a practical fashion,
three approaches show promise.

In recent work to validate distributed systems at Amazon

Web Services, engineers express both the implementation

code and the specification in the same general purpose pro-

gramming language [Bor+21]. In this case, the specification is

a simple-to-understand reference implementation, which lives

in the same source repository as the real system. As the

implementation changes, its conformance to the specification

is automatically checked via property-based testing on every

code commit, as part of the system’s regular test suite. While

this cannot be used to validate deep properties, it is a cheap

way to improve assurance in the system.

Adifferentmethod, called continuous formal verification, can be

used to verify (not just validate) implementations [Chu+18].

The idea is to automatically connect high assurance proofswrit-

ten in Coq, that rarely require changes, to system code that

changes daily, via symbolic execution. This is used at AWS to

verify deep properties (computational indistinguishability)

of cryptographic implementations written in C.
46

This, in turn, can be enhanced by increasing the level of

automation for the high-assurance proofs. If neither specifi-

cation nor implementation changes require human effort to

update proofs, the process of continuous formal verification

1 Introduction 14

could be completely automated. Moreover, it might be possi-

ble to automatically derive changes in the implementation

from changes in the specification, and vice-versa.

1.5 Contributions

This report is structured as follows.

I In Chapter 2, we survey the state of the art in formal

methods for distributed systems and identify open

problems, highlighting how formal methods could be

used to improve assurance in all system lifecycle stages.

I In Chapter 3, we report on our previous work with for-

mal methods and distributed systems, explaining how

different methods compare, based on our experience.

I In Chapter 4, we present our initial experiments with

automated reasoning and invariant inference, tech-

niques we describe in Chapter 2. We use Ivy’s graph-

ical interface [Pad+16b] to discover an inductive in-

variant for the classic two-phase commit protocol, and

use mypyvy [Fel+19] to encode a Raft-style version of

Multi-Paxos, as described in a recent comparison of the

two protocols [HM20]. This gave us a clearer under-

standing of what needs to be done to enable automatic

translation of specifications into decidable logics.

I In Chapter 5, we conclude by reviewing the ground

we covered and reflecting about future work.

1: The process of obtaining abso-

lute certainty is called verification.
Exhaustive testing is a form of

verification [GG75].

2: Or, at least, input spaces that

are too large to feasibly explore.

3: A behaviour is an execution

trace of the protocol.

State of the Art 2
In this chapter, we survey existing techniques for building

assurance in distributed systems. We cover the full spectrum

of methods: testing and model checking, interactive verifica-

tion, and automated reasoning. We aim to present a detailed

overview of the field and identify gaps in the state of the art,

both for protocol and for system verification.

2.1 Testing and Model Checking

The most direct way to build confidence that a system does

what it should is to test it, i.e., give inputs to the system and

check that the outputs match the expectation.

Testing can be very effective for systems in which the space

of inputs is small, and exhaustive enumeration of all inputs

is therefore possible. For such systems, testing can provide

certainty of the system’s correctness.
1
However,most systems,

and certainly most interesting systems, have infinite input

spaces,
2
so exhaustive testing is out of the question.

Distributed systems are typically reactive, i.e., they maintain

an ongoing interaction with their environment and never

terminate, so they are generally not amenable to exhaustive

testing. Moreover, for reactive systems, we are not only

interested in safety properties, but also liveness properties,

which can be more difficult to test.

For protocols, the equivalent of testing ismodel checking. Given

a description of the protocol as a state transition system (i.e.,
a model) and a logical formulation of the properties it must

satisfy, amodel checker systematically explores the protocol’s

behaviours
3
and checks that the specified properties hold.

The benefit of model checking over testing comes from

models being expressed at higher levels of abstraction than

implementations. Abstract models are easy to change and

2 State of the Art 16

4: A change thatmight takedays

to code in an implementation can

bedeveloped in amatter of hours

for a model.

5: Notably, Netflix, which intro-

duced the term, performs chaos

testing in production [Net11].

6: Black-box tests interact with

the system only via its regular

input and output interfaces. Un-

like white-box testing, no access

to the source code is required.

7: Jepsen introduces “special”

partition faults, e.g., producing
topologies in which every node

can see a majority, but no node

sees the samemajority as others,

or where the cluster is split in

half, but there is a bridge node

which has bidirectional connec-

tivity to both halves. It also sup-

ports other types of faults, e.g.,
pausingprocess executionor ran-

domly shifting system clocks by

small amounts [Kin13].

therefore they are a good tool for exploring and validating

different possible system designs.
4
Indeed, companies in

industry use modelling and model checking tools when

designing new systems, before they start implementing them,

to catch errors early [New+15].

At the same time, however, in a commercial setting at least, it

is not sufficient to validate only the design of a systemwithout

validating its implementation. Testing is also necessary.

Moreover, testing can be performed in the environment in

which the system actually runs. A common errorwithmodels

is that they do not precisely describe the environment—the

“real world” can exhibit faults which the model does not

capture, but which affect the correctness of the system. For

this reason, companies employ so-called chaos engineering,
deliberately introducing random faults into their systems to

ensure they behave correctly even in unfavourable execution

environments [Net11; Rob+12; Nak15].
5

2.1.1 Fault-Injection and Random Testing

Experience shows that random testing of distributed systems

can be very effective. For instance, Jepsen, a black-box testing6

framework for partition faults has found a remarkably large

number of bugs in over 25 production systems [Kin20].
7

Fault injection. While Jepsen is arguably the most widely

known tool for fault injection, other projects perform similar

testing with custom tooling [Has15; She16; Rei16; Cor20].

FoundationDB, for instance, was designed from the ground

up to allow deterministic simulation of the entire system.

Its simulator can introduce node crashes, reboots, network

faults, partitions, disk errors, and clock errors to check that

the database provides strong consistency in unfavourable

environments under arbitrary workloads [Zho+21]. Most

interestingly, FDB’s code cooperates with the simulator in

2 State of the Art 17

[Alv+16]: Alvaro et al. (2016),

‘Automating Failure Testing Re-

search at Internet Scale’

8: In the original paper [ARH15],

lineage information for each pro-

tocolwas given, expressed inDat-

alog. When deployed in produc-

tion at Netflix, however, lineage

was first learned by observing

real executions via tracing and

then used to derive a model of

redundancy [Alv+16; AT17].

[MN17]: Majumdar et al. (2017),

‘Why is random testing effective

for partition tolerance bugs?’

producing rare events via a process called buggification—
code that can fail (e.g., disk operations) is annotated with the

BUGGIFYmacro such that the failure condition at that point

can be artificially triggered by the simulator [Mil21]. This

white-box approach finds errors faster than black-box tools

like Jepsen, but has the disadvantage of requiring more effort

to set up and needing some human input (in the form of

code annotations) to guide the search.

Lineage-driven fault injection is an alternative approach that is

fully automated, and requires no human ingenuity [Alv+16].

It was developed precisely to solve the dual problems of black-

box tools wasting resources, on one hand, and white-box

approaches requiring human ingenuity, on the other. Rather

than inject faults at randomor using human-generated heuris-

tics, LDFI learns
8
what mechanisms provide fault tolerance

in a correct execution (e.g., redundancy, broadcast), and in-

jects only failures that affect the mechanisms involved in

reaching a correct outcome [ARH15; Alv+16; AT17]. Failures

that cannot lead to incorrect outcomes are never explored,

reducing the search space.

When is testing effective? Jepsen is so successful because,

while the space of possible executions is too large to ex-

plore to any significant degree, partition bugs can, with

overwhelming probability, be discovered by exploring only

a small subset of executions [MN17].

Other kinds of bugs, however, do not have this property, so

they are much harder to discover. Nonetheless, as we have

seen in Section 1.1.2, most bugs we empirically encounter in

distributed systems are shallow, requiring only a few events

to occur for the bug to manifest—they have low bug depth.
This means that, given enough time, random testing will

discover these bugs. Moreover, as we have seen, human-

provided annotations and lineage reasoning can be used to

bias the search in productive directions.

2 State of the Art 18

9: Somewhat confusingly, the

tools that perform this testing

are called software model checkers
in the systems literature, despite

checking software implementa-

tions, not models.

Reduction. Various other techniques improve the perfor-

mance of random testing by reducing the number of ex-

ecutions that need to be explored. The general idea is to

exploit properties such as (1) communication and state sym-

metry and (2) event independence to show that classes of

executions have equivalent behaviours—therefore it suffices

to explore only a representative execution from each class.

Techniques that exploit these properties are called symmetry
reduction [MDC06] and partial order reduction [Cla+99; FGL05],

respectively, and are widely used.

Softwaremodel checkers. While these techniqueswere ini-

tially developed for model checking, they have been adapted

for use in testing implementations
9
via tools such asMaceMC

[Kil+07], MODIST [Yan+09], dBug [SBG10], SAMC [Lee+14],

andFlyMC [Luk+19]. These so-called softwaremodel checkers al-
low systematic testing of distributed system implementations

and have been successful at finding complex bugs—FlyMC,

for instance, found a Paxos bug in Cassandra requiring 54

events to occur [Luk+19].

Amajor benefit of software model checkers compared to non-

systematic testing is that they can provide formal assurance in
the form of coverage guarantees—e.g., if the search explores

all executions up to depth 3 and finds no errors, that means

that no errors exist up to that bound.

Byzantine testing. Systems that are supposed towithstand

Byzantine faults are trickier to test. The problem is that there

is no principled way to generate arbitrary faults.

Twins, a recent approach for systematic testing of BFT sys-

tems, simulates Byzantine behaviour by running multiple

instances of correct nodes with the same identity. These

nodes run in “parallel universes” and thus produce different,

potentially conflicting messages. Twins then replays these

messages in the same execution—this is equivalent to the

node equivocating. While this approach does not emulate

arbitrary faults, it does catch many errors [Ban+20].

2 State of the Art 19

10: The point is not obvious.

The long-term benefit of formal

methods will come not just in

the form of “correctness” guar-

antees, but also from tools built

around formal descriptions (e.g.,
for model checking, symbolic

execution, invariant inference,

automated reasoning, synthesis

and repair). Formal methods

promise to reduce not only hu-

man error, but also human effort.

11: And with a program synthe-

siser, a model becomes a tool to

generate implementations, etc.

12: Nested depth-first search is

used to detect cycles when check-

ing liveness properties [Hol18].

13: This is called model checking
because the tool checks that the

state graph is a model (in the

logic, model-theory sense) of a

temporal logic formula.

14: BDDs are a compact repre-

sentation of boolean formulas.

2.1.2 Checking Temporal Logic Specifications

Models take less effort to develop than implementations, and

writing a model can help uncover design issues early in the

development process. Moreover, especially for distributed

systems, having to precisely specify correctness properties

helps engineers focus on ensuring the system design works

not only on the “happy path” on which no failures occur, but

also in the presence of rare events [New+15]. However, all of

this can be done with pen and paper, without computers.

Precise, testable system descriptions. The major advan-

tage of computer-assisted modelling is that it produces sys-

tem descriptions that can be manipulated automatically.10

An obvious way to manipulate a model is to systematically

test it with a model checker. In the presence of a model

checker, the model is not only a description of the system’s

design—it becomes a tool for reasoning about different po-

tential designs.
11
In the words of AWS engineers, “a precise,

testable description of a system becomes a what-if tool for

designs, analogous to how spreadsheets are a what-if tool

for financial models” [New+15].

Types ofmodel checkers. Given a description of a protocol

and a specification of its expected properties, there are multi-

ple ways to check that the protocol meets the specification.

Most common are explicit state model checkers like SPIN

[Hol97] and TLC [YML99]. These tools, starting from the

initial states of the system, explicitly build a state transition

graph via breadth-first search
12
and validate that the prop-

erties are upheld in all reachable states.
13
This approach is

simple to understand and the reduction techniques discussed

in the previous section can be directly applied.

An alternative approach is symbolicmodel checking, based on

either BinaryDecisionDiagrams (BDD)
14
[Cla+96] or Boolean

Satisfiability (SAT) [McM02]. Rather than represent states

2 State of the Art 20

15: Ivy and mypyvy, two tools

we will discuss in Section 2.4,

also implement (bounded) sym-

bolic model checking.

16: For systems with finite state
spaces, there is no need to bound

the execution depth—after some

time, all states will be explored.

17: With abstraction, the line

between model checking, sym-

bolic execution, automated theo-

rem proving, and program anal-

ysis via abstract interpretation,

becomes very blurry. The tech-

niques we discuss in Section 2.4

mix insights from all these fields.

18: The reverse is not true. Since

� is an over-approximation,

there are properties which �

satisfies, but � does not—the

abstraction has “spurious coun-

terexamples”.

[Kur18]: Kurshan (2018), ‘Trans-

fer of Model Checking to Indus-

trial Practice’

and the state transition graph explicitly, symbolic approaches

represent them as propositional formulas. This is typically

more compact than an explicit representation. For this reason,

symbolic model checkers can explore state spaces that are

several orders of magnitude larger than what is feasible with

an explicit state model checker [CG18].

Alloy Analyzer [JSS00] and Apalache [KKT19] are notable

symbolic model checkers, used to validate specifications

written in Alloy and TLA
+
, respectively.

15

Abstraction. By default, model checkers cannot verify the

correctness of infinite state transition systems. For systems

with infinite state spaces, both explicit and symbolic ap-

proaches bound the number of times the transition relation

is unfolded.
16
In other words, they explore the state graph

up to some finite depth. Nonetheless, perhaps surprisingly,

we can use model checkers to verify infinite state systems.

The idea is to reduce, via a sound over-approximation, the

check on an infinite state graph to a check on a finite state

graph. This process is called abstraction.17 Given a concrete

model �, abstraction produces an abstractmodel�, such that

if � satisfies some property %, then � satisfies it as well.
18

Abstraction is a field of study in its own right, but the

major techniques are counterexample-guided abstraction

refinement (CEGAR) [Cla+00] and interpolation [McM03].

Industrial use. Model checking has seen tremendous use in

industry, particularly for verifying hardware designs [Bee+96;

Eir96; Jan+97; PS99]. Interestingly, the adoption of model

checking for hardware validation was driven by the same

problem that led to the creation of software model check-

ers for distributed system implementations—testing was

inadequate to catch deep errors [Kur18].

In the realm of distributed systems, companies like Amazon

[New+15], Microsoft [Dem18; Lam18], Dropbox [Lam18], and

MongoDB [SZT21] use model checking to validate designs.

2 State of the Art 21

19: Software model checkers, de-

scribed previously, can test im-

plementation correctness.

20: AWS describes TLA
+
mod-

els as “an excellent form of doc-

umentation” [New+15].

[DHS20]: Davis et al. (2020), ‘Ex-

treme modelling in practice’

[Hal20]: Halterman (2020), Real-
TimeConformanceMonitoringwith
TLC

21: E.g., performance degrada-

tion or increased error rates.

2.1.3 Connecting Models to Implementations

Models are used to validate system designs. However, sys-

tems are not just designed; they are also implemented. It

becomes important, then, to ensure that implementations

match the designs they are derived from. This is a different
problem than checking that the implementation is correct.

19

For instance, we might have multiple implementations of a

protocol, written in different programming languages, and

want to ensure that they all implement the same protocol. Or

maybe our model acts as documentation, and we must check

that in remains in sync with the code.
20

To handle this sort of problem, Gravell et al. proposed a pro-

gramming methodology called eXtreme Modelling [Gra+11].

It combines both model-based testing [DF93] and model-based
trace checking [JB83; How+11], with the aim of keeping speci-

fications and implementations in sync. The former technique

uses themodel to generate tests that can be run against imple-

mentations, whereas the latter instruments implementations

to capture traces that are then checked against the model.

Conformancemonitoring. For distributed systems,model-

based trace checking is particularly interesting, and is in fact

used in industry [DHS20]. In real deployments, distributed

systems collect logs that are used for runtime monitoring

and realtime alerts. If a system stops processing requests,

for instance, an engineer gets alerted to fix the issue. Trace

checking enhances this workflow. System traces obtained

from logs are fed into a model checker to make sure that

the system behaves as expected [Hal20]. If it does not, an

engineer can be alerted.

The benefit of this approach is that it detects not just catas-

trophic scenarios, or trends that are easily observed via

metrics,
21
but also hidden issues which might indicate the

existence of an implementation bug—and should therefore

be looked at by an engineer.

2 State of the Art 22

22: We treat abstraction refine-
ment as a method for automated

verification, not for testing. We

discuss invariant inference, the

automated verification flavour of

CEGAR, in Section 2.4.

23: Popular proof assistants in-

clude Coq, Isabelle, and Agda.

[Wil+15]: Wilcox et al. (2015),

‘Verdi: A Framework for Imple-

menting and Formally Verifying

Distributed Systems’

24: Behaviours are traces of in-

puts and outputs observed dur-

ing the system’s execution.

25: This is a form of vertical com-

position. The system is built by

composing layers.

26: Verifying the transformers

remains challenging, however.

The Raft VST, which provides

fault-tolerant statemachine repli-

cation, took 18 months of effort

to prove correct [Woo+16]. The

challenge lies in establishing in-

ductive invariants.

2.2 Interactive Verification

As we have seen, most distributed systems cannot be ex-

haustively tested or model-checked.
22

For such systems, we

can obtain formal correctness guarantees through interactive

verification. We can encode a description of the system and

its desired properties in an interactive theorem prover,23 and
show via a series of deductive steps that the system has the

desired properties. This approach applies to both protocols

and implementations, but requires a large amount of effort.

Much of the research in this area has, therefore, focused

on ways to reduce the effort required to interactively verify

distributed systems and their implementations.

2.2.1 Refinement Using Verified System
Transformers

One approach comes from Verdi, in the form of verified sys-

tem transformers (VSTs) [Wil+15]. A typical way to prove the

correctness of a distributed system is refinement—a system is

correct if its behaviours
24

are a subset of those of another sys-

tem that is known to be correct. For example, a state machine

replication protocol is linearizable if all input/output traces

it produces—even in the presence of faults—could have been

produced by the unreplicated state machine.

A verified system transformer is a mechanism to transform a

system into another, such that the transformed system refines

the original. VSTs are generic—they can be applied to any

existing system to add extra capabilities,
25 e.g., the ability

to tolerate dropped or reordered packets, or node crashes.

The benefit is that the transformer only needs to be verified
once, and then that proof can be reused in the correctness

proofs of multiple systems (derived using the transformer),

reducing the overall amount of effort required [Wil+15].
26

The Verdi framework has been used to verify an implemen-

tation of Raft, extracted from Coq to OCaml [Wil+15].

2 State of the Art 23

[SWT18]: Sergey et al. (2018),

‘Programming and Proving with

Distributed Protocols’

27: Leslie Lamport is skeptical

of program logics and argues

that they are not necessary, as

“anyproof inmathematics is com-

positional” [Lam98a].

28: Trace-based refinement is of-

ten called “TLA-style refinement”

in the literature, since TLA
+
can

express refinement relations that

can be model-checked by TLC.

29: Up to this point, the method-

ology is equivalent to Verdi.

30: The decomposition between

protocol and node-level verifica-

tion lets us use any framework to

verify implementations, includ-

ing, e.g., automated verifiers. It

also permits implementations in

different languages to coexist.

2.2.2 Compositional Reasoning With
Separation Logic

Verified transformers let us reason about systems built via

the vertical composition of features by reasoning about the

correctness of each feature individually. Butmanydistributed

systems do not fit neatly within this pattern.

Some systems are composed of different protocols that inter-

act. For example, a systemmight use two-phase commit (TPC)

to maintain a replicated log, but also have a side-channel

protocol for inspecting the state of TPC participants [SWT18].

The two protocols are coupled, so it is hard to express them

as verified transformers. Nonetheless, wewant to verify them

separately and then reason about their composition, rather

than having to verify the composed system as a monolith.

Composition of proofs is a difficult problem, but in the realm

of program verification, separation logic [ORY01; OHe07] has

proven a useful technique for compositional reasoning.
27

To provide compositional reasoning for distributed systems,

Sergey et al. developed distributed separation logic, Disel, which

adds an explicit notion of protocols to the logic and introduces

rules tailored towards protocol reasoning [SWT18]. Later

work added support for implementing systems with node-

local concurrency, i.e., multi-threading [Kro+20].

2.2.3 Linking Refinement and Separation Logic

Sprenger et al. propose Igloo, a methodology that combines

the trace-based refinement of Verdi
28

with separation logic

reasoning [Spr+20]. To verify a system, we first specify an

abstract model of the system in terms of a trace property. Then,

webuild a protocolmodel, that describes communicatingnodes,

and show that this refines the abstract trace property.
29

We

then decompose this into separate models for each node

and the environment, and give each node a separation logic

specification, which we use to verify its implementation.
30

2 State of the Art 24

31: For instance, SMT solvers

can work with undecidable log-

ics, but that means they are not

complete. Solvers can automat-

ically prove low-level theorems

that are cumbersome but do not

require much insight, but need

guidance for complex proofs.

32: Byzantine Paxos was proven

safe by showing that it refines

the regular Paxos protocol.

[Haw+15]: Hawblitzel et al.

(2015), ‘IronFleet: proving prac-

tical distributed systems correct’

2.3 Semi-Automated Verification

The problem with interactive verification is that it requires

significant human effort to write proofs. This burden can be

eased by automated theorem provers, but for most proofs about

distributed systems, ATPs still require human input to guide

them.
31
Humans need to provide a high-level proof structure,

in which the ATP can fill in the details, andmore importantly,

they need to discover inductive invariants that capture the

system’s safety properties. This requires deep insight and is

challenging even for experienced researchers, taking days

for simple systems and months for complex protocols.

2.3.1 Deductive Verification of TLA
Specifications

An example of a semi-automated proof system is TLAPS, the

TLA
+
proof system [Cha+08; Cha+10; Cou+12].

TLAPS lets users write hierarchical proofs for safety prop-

erties of TLA
+
models, and passes these proofs to backend

verifiers to check their validity. Optionally, backends can at-

tempt to fill in any gaps in the proofs. Indeed, a common way

to prove theorems is to use the OBVIOUS command, which

instructs the backend to fill in the entire proof. This typically

fails, so the user has to provide the structure of the proof

before the solver can handle the proof’s cases automatically.

TLAPS has been used to prove the safety of Byzantine Paxos
32

[Lam11], Multi-Paxos [CLS16], and Pastry [AMW18].

2.3.2 Safety and Liveness Proofs for
Implementations

IronFleet is a methodology for semi-automated verification

of both safety and liveness properties of distributed system

implementations [Haw+15]. It combines TLA-style refine-

2 State of the Art 25

33: The Igloo methodology we

reviewed earlier is heavily in-

spired by IronFleet.

[Pad+16b]: Padon et al. (2016),

‘Ivy: safety verification by inter-

active generalization’

34: For conciseness, in this sec-

tion, we use the term “invariant”

to refer to inductive invariants.

ment for reasoning about abstract protocols with Hoare-style

verification of the code at each node.
33

IronFleet is implemented in Dafny [Lei10], a language de-

signed for automated theorem proving, and includes an

embedding of TLA in Dafny to verify liveness. Notably, Haw-

blitzel et al. develop a set of SMT solver heuristics for TLA
liveness proofs which allow the solver to automatically prove

many low-level goals. Indeed, they report that a single heuris-

tic is “enough to automatically prove 40 fundamental TLA

proof rules”, and complex rules require only a few manually

written lines of proof [Haw+15].

IronFleet was used to produce an implementation of Multi-

Paxos verified for both safety and liveness.

2.3.3 Finding Invariants by Interactive
Generalisation

TLAPS and IronFleet ease the burden of writing proofs, but

insight is still required to discover inductive invariants. To

help with this, Padon et al. developed Ivy [Pad+16b], a tool

that guides users towards discovering inductive invariants.

This is more challenging than it sounds. In general, it is unde-

cidable whether a given proposition is an inductive invariant

or not. The way invariants
34

are discovered manually is by

trial and error—we come up with a candidate, try to prove

that it is inductive, and in most cases, we fail; we then try

another candidate and repeat the process until we succeed.

The limiting factor is that proofs take a long time to develop,

sowemight spendweeks beforewe realise that our candidate

invariant is not inductive. It is a very slow process.

Decidable proofs. Padon’s insight was that if the proofs

can be automated, this process can be greatly sped up, and

moreover, the computer can assist the human verifier by

showing exactly how the inductiveness proof fails for the

2 State of the Art 26

35: Specifically, it ensures that

verification conditions fall into

an extension of the Bernays-

Schönfinkel-Ramsey fragment

of first-order logic known as

EPR [PdMB10]. The extension is

called extended EPR [Pad+17].

36: Ivy only helps discover uni-

versally quantified invariants.

37: Ivy models can be extracted

intoC++ code to obtain executable

implementations [MP20].

38: Padon explores how to spec-

ify complex protocolswithin this

decidable fragment of first-order

logic in later work [Pad+17], but

his method is manual.

39: Reducing from undecidable

to decidable logics is in principle

similar to abstracting from infi-

nite to finite transition systems.

candidate invariant—thereby helping formulate a new can-

didate. To make this possible, Padon et al. introduced RML, a

modelling language inspired by Alloy [Jac02], which guaran-

tees that verification conditions for inductiveness checking

are decidable,35 and thus the inductiveness proofs can be fully

automated [Pad+16b]. When the proof fails, the tool displays

a counter-example to induction, and the user must come

up with another candidate invariant that does not have this

counter-example. This continues until the user arrives at an

inductive invariant that establishes the desired property.
36

The importance of Ivy. RML is limited in terms of the prop-

erties it can express whilst remaining decidable. Nonetheless,

Ivy gives us a deep insight about how to fully automate

correctness proofs for distributed systems.
37

If we develop a way to discover inductive invariants without

human interaction, then we have a fully automated proof sys-

tem for any protocol expressible in RML. The challenge, then,

becomes one of (1) expressing interesting protocols in this

restricted fragment of first-order logic
38

and (2) automatically

discovering inductive invariants for such protocols.

Abstraction. Interestingly, both the problem of expressing

a system in extended EPR and that of finding an inductive

invariant can be understood in terms of abstraction.

Not all constructs can be expressed in EPR, so we must find

alternatives that capture in sufficient detail the aspects we

want to describe. For example, set cardinalities cannot be

expressed in EPR, but are useful to reason about quorums in

distributed protocols. However, often the only property we

care about is quorum intersection, which can be expressed.

Abstracting the property lets us automate reasoning.
39

Similarly, an inductive invariant is an abstraction of the

transitive closure of the system’s transition relation. The

challenge is to find an abstraction that captures sufficient

detail to imply the desired safety properties.

2 State of the Art 27

40: In this section, we focus on

safety verification via invariant

inference, but other kinds of

tools, e.g., program synthesisers,

are similar in principle.

41: As Clarke et al. put it, “ab-
straction amounts to removing

or simplifying details as well as

removing entire components of

the original design that are ir-

relevant to the property under

consideration” [Cla+03].

[Bra11]: Bradley (2011), ‘SAT-

Based Model Checking without

Unrolling’

[EMB11]: Een et al. (2011), ‘Ef-

ficient Implementation of Prop-

erty Directed Reachability’

42: The original algorithm was

later extended in various ways,

as described in [Gur15].

2.4 Automated Verification

We want to build computer tools that can automatically

reason about systems.
40

For this to be possible, we must have

precise, formal descriptions of the systems we are interested

in. But not all formal descriptions are suitable for automated

reasoning. Indeed, as hinted already, the key enabler of

automated verification is abstraction—which is, in effect,

the process of transforming a formal description that is not

suitable for automated reasoning into one that is. This comes

at the cost of introducing imprecision, which is why we

need to be careful when choosing an abstraction to ensure it

captures sufficient detail to imply the desired properties.
41

In the previous section, we mentioned two kinds of ab-

straction that make possible the automated verification of

distributed systems—translating specifications into a decid-

able fragment of first-order logic and automatic invariant

inference. To our knowledge, no work has been done to auto-

mate the former kind, so in this section we focus exclusively

on techniques for automated inference of inductive invariants,
that is, finding sound over-approximations of the transitive

closure of a system’s transition relation.

2.4.1 Property-Directed Reachability

An approach that came out of the symbolic model-checking

world is property-directed reachability (PDR) [Bra11; EMB11].

The idea is, instead of unfolding the transition relation a

fixed number of times (thus only being able to model-check

correctness), incrementally construct an inductive invariant

that over-approximates reachability (i.e., the transitive closure
of the transition relation) and is strong enough to imply the

desired property—hence the name of the approach.

Bradley proposed an algorithm called IC3 [Bra11], a specific

instance of the PDR approach.
42

The algorithm constructs a

sequence of formulas (called frames), �0, �1, �2, . . . , �: , that

over-approximate the sets of states reachable in at most

2 State of the Art 28

43: For finite state systems, a

fixpoint will always be reached.

Bradley’s approach is for finite

state systems, but a related ap-

proach, UPDR, is guaranteed to

terminate on certain classes of

infinite systems [Kar+17].

44: IC3 stands for “incremental

construction of inductive clauses

for indubitable correctness”.

45: %′ refers to % in the post-

state of the transition relation).

46: Intuitively, �8 is the weakest

(containing the largest number

of states) over-approximation

that can be strengthened to elim-

inate B. In the worst case, this is

�0, the initial state.

47: All approximations before �8

are stronger, so a clause that is

inductive relative to �8 is neces-

sarily inductive relative to them.

48: A generalisation of ¬B is a

clause that eliminates B but is

weaker than it. To generalise,

Bradley removes literals from¬B
until no more literals can be re-

moved without the clause ceas-

ing to be relatively inductive to

�8 [Bra11]. A cheaper option is to

use the UNSAT core returned by

the SAT solver [EMB11].

0, 1, . . . , : steps. Throughout the execution of IC3, each for-

mula �8 is an invariant (expressed as a conjunction of rela-

tively inductive clauses) that implies the property (�8 ⇒ %)

and maintains the approximation (�8 ∧) ⇒ �′
8+1

). The al-

gorithm terminates when the over-approximation reaches a

fixpoint, i.e., when �8 = �8+1.
43
At that point, �8 is an inductive

invariant that implies the desired safety property.

The key part of the IC3 algorithm
44

is the construction of

clauses, which is driven by counterexamples, in the style

of CEGAR [Cla+03]. Initially, �1 is set to %, the desired

property (assuming no 1-step counterexamples exist). The

algorithm tries to expand the over-approximation sequence

�0, �1, �2, . . . , �: , so it checks whether �: ∧) ⇒ %′.45 If

yes, it sets �:+1
= %. Every formula �8+1 is then refined by

adding to it clauses 2 from �8 that are maintained by the

transition (�8 ∧) ⇒ 2′)—this is called propagation. If no,
then there exists a state in �: that transitions into a bad

state B that does not satisfy %. IC3 then refines the over-

approximation sequence by finding the highest 8 such that

¬B is relatively inductive to �8
46

and adding to �0, . . . , �8
47

an inductive generalisation of ¬B.48 If this addition breaks the

approximation (�8 ∧) ; �′
8+1

), the algorithm recurses on

the new counterexample, until all counterexamples up to �:

are eliminated and : can be increased.

For finite state systems, IC3 always terminates and produces

an inductive invariant—in the worst case, the conjunction of

all bad states, but typically a much more reasonable one.

Universal PDR. A similar approach, PDR
∀
[Kar+17], works

for infinite state systems, by generalising the form that invari-

ant clauses take. Concretely, if invariants are conjunctions

not of pure propositional formulas as in IC3, but rather con-

junctions of universally quantified formulas, then it is possible

to use roughly the same algorithm for systems with an infi-

nite state space. The difference lies in how one generalises

from counterexamples. In PDR
∀
, Karbyshev et al. employ the

model theory notion of a diagram to generalise individual

2 State of the Art 29

49: The diagram of a state B is

an existentially quantified for-

mula that is the conjunction of

all atoms or negations of atoms

that are true in B—it captures

all equalities and inequalities

among elements in the model,

as well as the truth value of all

possible predicate applications.

Intuitively, a diagram is a full de-

scription of the state, fromwhich

all facts about it can be derived.

50: The diagram is an existen-

tially quantified formula. Its

negation, which gets added as

an invariant clause, is therefore

universally quantified.

51: Extended EPR has the finite

model property.

52: Invariant inference for such

programswas previously shown

to be decidable [Pad+16a].

53: We say “in the usual process”

because Ivy can in fact gener-

alise counterexamples to induc-

tion via diagrams and validate

the correctness of the generalisa-

tion via BMC [Pad+16b]. We de-

scribe the process in Chapter 4.

states into sets of states [Kar+17].
49

Concretely, when PDR
∀

tries to expand its over-approximation sequence by check-

ing whether �: ∧) ⇒ %′, if it identifies a counterexample

to safety (the implication does not hold), it generalises the

counterexample via its diagram and strengthens previous

frames accordingly,
50

in a fashion similar to IC3.

PDR
∀
works on logics that have the finite model property, that

is, in which satisfiable formulas have models of finite size—

this is a precondition for diagrams to bewell-defined.
51
While

the algorithm is not in general guaranteed to terminate, if it
terminates, it has the nice property that it either produces a

universally quantified inductive invariant that implies safety,

or shows that the system admits no such invariant. In this

sense, diagram-based abstraction is precise. The abstraction
introduces spurious counterexamples (that exist in the ab-

straction, but not in the concrete system) only if ∀ formulas

are not sufficient to approximate the system.Moreover, PDR
∀

has been shown to always terminate on certain classes of

programs, e.g., those manipulating singly-linked lists.
52

2.4.2 Incremental Inference of Universal
Invariants

In Ivy, in the usual process, when a counterexample to

induction is found, the human verifier has to manually

generalise it—retaining only the essential features of the

counterexample.
53

Once the user conjectures a generalisation,

however, Ivy can strengthen it via a technique called BMC +
Auto Generalize [Pad+16b]. To do this, Ivy model-checks the

conjectureup to someuser-chosen executionbound, verifying

that it holds in all reachable states up to that bound. If this

check passes, Ivy then uses theminimal UNSAT core returned
by the solver to strengthen the conjecture—retaining only its

essential parts. The risk of this approach is that, if the user

selects a bound that is too small, the discovered generalisation

can be bogus, failing to hold at higher execution depths.

2 State of the Art 30

[Ma+19]: Ma et al. (2019), ‘I4: in-

cremental inference of inductive

invariants for verification of dis-

tributed protocols’

54: An easyway to automate the

Ivy loop is to pick one of the

possible conjectures that passes

BMCwith a large bound. Indeed,

Ivy supports this natively, as we

describe in Chapter 4. With this

approach, however, there is no

way to identify that a wrong

clause was added.

55: The Ivy BMC + Auto Gener-
alize process bounds the execu-

tion depth of the system. I4 in-

stead bounds the domains used

in the system, e.g., instead of un-

bounded integers, use {0, 1, 2}.
This gives a finite state space.

56: The syntactic templates are

quite simple. They universally

quantify every clause in the fi-

nite invariant and add a distinct-

ness condition for elements of

the same sort.

[Yao+21]: Yao et al. (2021), ‘Dis-

tAI: Data-Driven Automated In-

variant Learning for Distributed

Protocols’

Automating the Ivy loop. Ma et al. observed that this pro-

cess can be automated [Ma+19].
54

Ivy needs the user to

suggest an initial conjecture, but then it does not require
human assistance—apart from selecting a BMC bound—to

strengthen it and use it to prove the system’s safety.

The idea behind I4 is that we can obtain the initial conjecture

automatically—and not just one clause of the invariant, as in

Ivy, but indeed a complete candidate inductive invariant can

be obtained automatically. The key insight is that invariants

of finite instances of the system tend to be very similar to

invariants of infinite instances.
55

We can use an algorithm

like IC3 to discover an invariant of the finite instance, and

then generalise it via syntactic templates. This is exactly what

I4 does. It finitises the specification, uses the AVR model

checker [GS19; GS20] to come up with an inductive invariant

for the finite instance, and generalises the invariant via a set

of syntactic heuristics or templates [Ma+19].
56

The I4 process does not always succeed in producing an

inductive invariant that implies the safety property—this can

happen either because the finite instance size was too small

or because the syntactic template for a clause generalised

it incorrectly. To fix this, I4 prunes clauses in an attempt

to remove instance-specific clauses from the generalised

invariant (the second kind of error), and if that fails, restarts

with larger bounds on the domains (the first kind of error).

Ma et al. do not directly compare their approach to PDR
∀
,

which also automatically infers universally quantified induc-

tive invariants, but evaluation in later work shows that, for

simple benchmarks, I4 and PDR
∀
behave similarly [GS21a].

2.4.3 Data-Driven Invariant Learning

Another, very different, approach that generalises from small

instances is DistAI [Yao+21]. I4 picks an instance size and

then discovers an inductive invariant for that finite instance

and tries to generalise it. DistAI does something different.

2 State of the Art 31

57: DistAI only enumerates uni-

versally quantified invariants. A

formula’s size is the number of

(quantified) variables and liter-

als in the formula, e.g., 2 vari-

ables and 2 literals.

58: These invariants, which are

universal clauses, are not vali-

dated by the SMT solver, so they

might be incorrect.

59: Each state stores the values

of all predicates, much like the

diagrams used by PDR
∀
.

60: The set contains all invari-
ants that hold over the sample.

This includes all actual invari-

ants, plus some incorrect ones.

61: The weakening procedure

also has third step, that projects

the failed clause to higher sub-

templates and adds these projec-

tions to the set. This is a tech-

nical detail that arises due to

how candidates are enumerated

in the first DistAI phase. The bro-

ken clause implied certain other

clauses, which were not enumer-

ated, but its removal requires re-

adding these clauses to the set to

maintain its completeness.

Instead of choosing an instance size, it picks a formula size (of

the candidate inductive invariant) and enumerates formulas

of that size.
57

This approach will eventually find an inductive

invariant that implies safety, but it is impractical—it requires

too many SMT queries to check the inductiveness of the

candidate invariants. To make this search feasible, DistAI

introduces two novel techniques, and proceeds as follows.

First, DistAI builds up a set of candidate
58

(not necessarily

inductive) invariants of the given size. To do this, it uses a

novel data-driven approach. It generates many executions of

differently-sized instances of the system, and collects the set

of reachable states—this is the data the algorithm operates

with.
59

These samples could be used to quickly filter out

bad candidate invariants without needing to query the SMT

solver. Instead, achieving the same effect but with better

performance, candidates are generated directly from the

samples using an invariant template. This is done efficiently

by dividing the template into subtemplates that exploit the

symmetry of the search space to reduce the number of

candidates generated. Overall, DistAI generates the set of all

invariants of the given size that hold over the sample.

The crucial observation is that, if an inductive invariant of
this size exists for the infinite system, it is necessarily weaker

than the conjunction of the clauses in the generated set.
60

This observation enables the second, similarly novel, part of

the algorithm, which monotonically weakens the clauses in

the set until their conjunction becomes an inductive invariant

that implies safety. For every clause that fails to be invariant,

DistAI applies a minimum weakening—it (1) removes the

clause from the invariant set, and (2) finds all minimally

weakened versions of the clause (by adding one atom as a

disjunction) and adds back to the set all weakened clauses

that are not implied by some other clause in the set.
61
Before

addition to the set, these weakened clauses can be filtered via

counterexamples. This weakening process continues until

an inductive invariant that implies safety is found. If none

2 State of the Art 32

62: DistAI never generates unde-

cidable verification conditions,

so SMT queries always termi-

nate, and systems have inductive

invariants of finite size, which

will be eventually found.

[Han+21]: Hance et al. (2021),

‘Finding Invariants of Dis-

tributed Systems: It’s a Small

(Enough) World After All’

63: These templates are either

provided by the user or hard-

coded into the SWISS tool.

64: SWISS and DistAI were

developed concurrently, with

SWISS published first.

65: This is similar to how IC3 op-

erates, constructing an inductive

invariant incrementally [Bra11].

66: Strengthening vs weakening

reflects SWISS searching bottom-

up and DistAI top-down.

is found, that implies none of chosen size exists, and the

algorithm is restarted with a higher formula size.

DistAI always terminates if the system can be verified using

a universally quantified invariant
62

and has been used to au-

tomatically verify a number of simple protocols [Yao+21].

2.4.4 Invariants with Quantifier Alternations

A major limitation of the approaches discussed so far is that

they only discover invariants that are universally quantified.

These suffice to verify simple protocols, but are not strong

enough to capture the behaviour of more complex protocols

like Paxos [Lam98b] and Raft [OO14]. These have invariants

with quantifier alternations, particularly of the ∀∗∃∗ kind.
Various techniques have been developed to automatically

discover such invariants.

SWISS. A technique similar to DistAI is SWISS [Han+21].

It leverages the same observation—that invariants of dis-

tributedprotocols tend tobe concise (i.e., small)—andsearches

the space of possible invariants via syntactic templates that

define the quantifier structure of the clause.
63

To speed up the

search, SWISS exploits the symmetry of the search space and

learns from counterexamples, only producing candidates

that are not equivalent to previous ones and which do not

violate known counterexamples.

There is, however, a significant difference between SWISS and

DistAI.
64

Whereas DistAI produced the strongest possible

candidate invariant and then gradually weakened until it

became inductive, SWISS takes a different approach.

In its first phase, called Breadth, it generates (non-redundant)

invariant clauses that are relatively inductive previously dis-

covered ones.
65

This builds an invariant incrementally, but

without reference to the desired safety property.

In its second phase, Finisher, SWISS attempts to strengthen
66

the invariant produced by Breadth with a new clause, such

2 State of the Art 33

67: Crucially, SWISS succeeds

only if the invariant produced

by Breadth is weaker than the

inductive invariant that implies

safety, i.e., only if the desired

inductive invariant can be pro-

duced via strengthening. In con-

trast, DistAI’s approach always

succeeds.

[Koe+20]: Koenig et al. (2020),

‘First-order quantified separa-

tors’

68: This still requires human in-

put, therefore, but arguably a

kind of input that requires less

insight.

[GS21a]: Goel et al. (2021), ‘On

Symmetry and Quantification’

[GS21b]: Goel et al. (2021), ‘To-

wards an Automatic Proof of

Lamport’s Paxos’

that the strengthened invariant is inductive and implies

safety.
67

Finisher can be applied on its own, to attempt to

discover a strong enough inductive invariant in one shot,

but this is typically too difficult for complex protocols—the

incremental, two-phase approach performs better.

Notably, SWISS is the first algorithm to verify Paxos and Flex-

ible Paxos automatically, andMulti-Paxos semi-automatically

(with a user-given invariant template) [Han+21].

Quantifier alternations without templates. The problem

with SWISS is that it requires the user (or, equivalently, the

tool developer) to provide the quantifier structure of the

invariants as input via templates. As such, the method is not

fully automated. Two works address this issue.

The first is FOL-IC3 [Koe+20], which preceded SWISS. It uses

the notion of separators such that the human verifier does

not need to provide explicit invariant templates, but only

the number of quantifiers required.
68

If any invariant with

the given number of quantifiers (regardless of its alternation

structure) exists, FOL-IC3 will find it. This was, in fact, the

first approach capable of finding invariants with quantifier

alternations, but it is slow, so it did not scale to Paxos.

An alternative, data-driven approach is IC3PO [GS21a]. This

discovers quantifier templates from executions of finite in-

stances of the system. The key insight, which resulted in a

technique called symmetry boosting, is that symmetries be-

tween invariant clauses of finite instances reveal quantifier

alternation patterns for invariants of the infinite instance. In

further work, Goel et al. extended this with range boosting to
support learning quantified invariants involving total orders

(e.g., ballot numbers) from finite instances [GS21b].

Given a hierarchical specification of Paxos (in terms of higher-

level protocols), this is sufficient to automatically discover

invariants for Paxos, Flexible Paxos and Multi-Paxos without

any human input [GS21b].

2 State of the Art 34

69: Although in typical practice

they are not verified, but only

model-checked. The next named

paragraph addresses this issue.

2.5 Gaps in the State of the Art

Our survey is by no means complete, but it nonetheless

provides a broad overview of the field. We explained current

techniques for building assurance in distributed protocols

and their implementations, and placed these techniques in

context, showing how they are related to each other and giv-

ing a hint of their relative advantages and disadvantages.

In the remainder of this chapter, we aim to highlight some

of the ways in which the state of the art falls short. Put

differently, we identify areas of potential improvement that

future work might choose to address.

The implementation formality gap. There is a large gap

between our ability to reason about protocols and our ability

to reason about implementations. Two approaches, software

model checking and conformance testing and monitoring,

seek to address this problem, but fall short in the sameway.

Software checkers can provide formal assurance about imple-

mentations, in the form of coverage guarantees, but are not

complete—they cannot verify systems. On the other hand,

protocol models can be verified using abstraction-based tech-

niques,
69

but even if they are, there is no way to carry this

assurance over to the implementation, because both testing

and monitoring approaches are incomplete.

There is a gap in the level of formal assurance we can obtain

for implementations, as compared to protocols. Researchers

have closed this gap by extracting implementations from spec-

ifications that were either interactively [Wil+15; LBC16], semi-

automatically [Haw+15], or automatically verified [MP20].

However, no one is using these extracted implementations

in practice and it is unlikely that anyone ever will. This is the

case because the extraction approach completely upends the

normal software development lifecycle—it expects organisa-

tions to abandon existing implementations and technologies

2 State of the Art 35

[Rei+20]: Reid et al. (2020), ‘To-

wards making formal methods

normal’

70: This not a direct translation,

as the way state is represented

differs between the implemen-

tation and specification, but it

might be possible to learn the

translation scheme.

71: That implementations and

specifications are written in dif-

ferent languages is a barrier

to maintaining their correspon-

dence. In fact, recent work in

industry uses reference imple-

mentations, written in the same

language as the main codebase,

instead of TLA
+
models, to ame-

liorate this issue [Bor+21]. How-

ever, this foregoes automatic rea-

soning about specifications.

and switch to a correctness-focused rather than a product-

focused mode of operation [Rei+20]. Moreover, the first two

approaches require unscalable amounts of human effort.

A potential solution to the formality gap that might see more

industrial adoption is based on abstraction. An Ivy-style

decidable specification could be used to automatically infer

system invariants that imply the desired safety properties,

and these invariants could be checked in the implementation

via, for example, symbolic execution.
70

In effect, this would

check that both spec and implementation satisfy the same

abstraction, and it opens many avenues of potential research.

For instance, how can this correspondence be maintained in

the face of software evolution? Can patches to the specification

be automatically derived from implementation changes, or

vice-versa?
71
Can parts of the implementation that do not

conform to the specification be repaired automatically?

Automation-unfriendly specifications. In Section2.1.2,we

speculated that the long-term benefit of formal methods will

come from tools built around formal descriptions, e.g., tools
for symbolic execution, program synthesis and repair, etc.
And just now, we saw how such tools might address deep

gaps in the state of the art. However, this vision faces an ob-

stacle in the fact that most current specifications are written

in languages like TLA
+
, that are not suited for automated

reasoning. Moreover, writing specifications such that their

safety can be verified automatically via decidable reasoning

is unnatural—specifications amenable to automated reason-

ing typically cannot be expressed in the normal “operational”

style and require expertise to develop [Pad+17].

It would be a significant advance to be able to automatically

rewrite “normal” specifications into specifications suitable

for automated reasoning. Data-driven invariant inference

tools like I4 [Ma+19], DistAI [Yao+21], and IC3PO [GS21a]

provide a clue as to how this might be achieved—after all,

as we established in Section 2.3.3, invariant inference and

expressing specifications in EPR are both forms of abstraction.

2 State of the Art 36

72: Many systems papers pub-

lished in the last decade describe

what are, in effect, classic proto-

cols re-enginereed toworkunder

non-standard assumptions.

73: Indeed, a major motivation

for formal specifications in in-

dustry is to enable engineers

to confidently optimise existing

protocols [New+15].

[Tau+18]: Taube et al. (2018),

‘Modularity for decidability of

deductive verification with ap-

plications to distributed systems’

It might be possible, given an operational specification of a

protocol, to execute it on small instances and thereby learn
a specification whose verification conditions fit within EPR.

This would open up many different ways of using existing
specifications, besides model checking them.

Synthesis of new protocols. One consequence of having

decidable protocol specifications is that it becomes possible

to manipulate them in interesting ways.

For instance, most protocols are not developed from scratch.

Rather, they are obtained by adapting existing protocols.

An example of this is HotStuff [Yin+19], a variant of PBFT

[CL99] that executes a view-change and checkpoint after

every commit. It might be possible to automatically derive

HotStuff given a specification of PBFT. After all, the protocols

are not very different—they satisfy the same specification,

but HotStuff obeys additional constraints.
72

Similarly, given

a specification of HotStuff and synchrony assumptions, it

might be possible to derive Sync HotStuff [Abr+20]. This is

enabled by automated reasoning—if we can automatically

check that a protocol is correct (via invariant inference and

decidable reasoning), then we can synthesise new protocols,

either from scratch or by adapting existing ones.
73

Protocol composition. Current approaches struggle with

reasoning about the composition of different protocols. Tech-

niques based on separation logic [SWT18; Kro+20; Spr+20]

alleviate the problem, but do not fundamentally solve it. Com-

position has also been studied in the context of automated

reasoning, although in the form of decomposing protocols into
components to enable decidable verification [Tau+18].

It would be interesting to explore how automated techniques

like invariant inference could help reasoning about protocol

composition, e.g., by generating invariants for a composed

system based on those of its components.

1: Excepting the work on certi-

fied synthesis [Wat+21], all work

described here was conducted

before the author joined NUS.

[PS18]: Pîrlea et al. (2018), ‘Mech-

anising Blockchain Consensus’

2: It would be interesting to ver-

ify Toychain in a framework that

supports automated invariant

inference and decidable proofs,

and compare the relative effort.

[Pîr19]: Pîrlea (2019), ‘Toychain:

Formally-Verified Blockchain

Consensus’

Preliminary Work 3
In this chapter, we briefly review our previous work with for-

mal methods and distributed systems.
1
Moreover, we explain

how different methods compare, based on our experience.

Mechanisingblockchain consensus. In 2018,wepresented

Toychain, the first formalisation of Nakamoto consensus with

a proof of its consistency mechanised in an interactive proof

assistant [PS18]. We used the Coq proof assistant to specify

the protocol, and define our network model in the same

small-step style that Verdi [Wil+15] and Disel [SWT18] use.

Concretely, we represent the state of the “world” as an in-

ductive datatype whose constructors are the events that can
occur, e.g., delivering or dropping a packet, performing a

local computation at a node, etc. Nodes’ message handlers

are specified in a pure functional style, so our specification is

executable—it can act as a reference implementation.

We prove a basic form of eventual consistency called quiescent
consistency, which states that when all messages have been

delivered, then protocol participants agree on the current

chain. Despite this being a weak property for a relatively

simple protocol, it took us over 2 months of effort to discover

and establish an inductive invariant that implied it.
2

This involved a process of trial and error, gradually refining

the invariant so that is neither too weak (not implying the

desired property) nor too strong (not maintained by every

transition). The challenge was, that, once we came upwith an

alternative candidate invariant, it usually took a few days to

progress sufficiently in the proof to realise that the invariant

is inadequate.

In later work, we relaxed some of the assumptions that the

original specification relied upon, and extracted the protocol

specification into an executable OCaml program [Pîr19].

3 Preliminary Work 38

[PKS21]: Pîrlea et al. (2021), ‘Prac-

tical smart contract sharding

with ownership and commuta-

tivity analysis’

[Wat+21]: Watanabe et al. (2021),

‘Certifying the synthesis of heap-

manipulating programs’

Solver-assisted reasoning. We also experimented with F
★

[Swa+16], a proof assistant similar to Dafny [Lei10], capable

of automatically discharging certain proof obligations by

invoking an SMT solver. We developed a formal model of

Coco, a blockchain system at Microsoft Research, to increase

assurance in the design—we proved that the protocol, under

some assumptions, satisfies sequential consistency. Interest-

ingly, while the model was not formally connected to the

implementation, the process of designing the model helped

us discover a concurrency bug in the implementation that

would have compromised safety. F
★
’s automation facilities

were useful, as they helped us focus on the high-level proof

whilst the SMT solver handled the cumbersome parts.

Informal reasoning. While developing CoSplit [PKS21], a

static analysis tool that improves blockchain scalability by

parallelising the execution of smart contract transactions

across shards, we discovered an error in the design of the

blockchain protocol we integrated our tool with. Concretely,

when we tried to evaluate CoSplit’s impact on transaction

throughput, we noticed that the system—even without our

modifications—would stall when put under heavy load.

High transaction loads produced liveness failures. The root

issue was simple and might have been spotted if a formal

model of the system existed: the implementation relied on

a timeout (i.e., synchrony assumption) instead of correctly

implementing PBFT’s commit phase.However, itwas difficult

to pin-point the issue in a large codebase, because our mental

model of how the system worked did not match reality.
3

3: Having a model that was con-

nected to the code might have

helped us identify the root cause

faster. But it is unclear whether

conformance testing would have

discovered the discrepancy be-

tween the implementation and

the intended design, as the issue

relied on timing to manifest.

Synthesising certified implementations. Finally, with the

Certified Suslik project [Wat+21], we extended an existing

program synthesiser to produce not just programs, but also

machine-checked proof certificates. While this work is not

directly related to distributed systems, it would be interest-

ing to develop synthesisers for such systems, automatically

generating verified implementations from specifications.

1: We also experimented with

model-based testing of the pop-

ular etcd implementation of Raft

consensus. That was part of a

group project, however, and is

therefore not covered in this re-

port, which focuses on individ-

ual contributions.

2: In Ivy, the safety property

is implicitly one of the clauses

of the invariant, so whenever

the invariant becomes inductive,

safety is established.

Towards Automated
Reasoning 4

In this chapter, we present our initial experiments with auto-

mated reasoning and invariant inference.
1
We experimented

with two tools for decidable reasoning, Ivy [Pad+16b] and

mypyvy [Fel+19]. We used Ivy’s graphical interface to dis-

cover invariants for two-phase commit and used mypyvy to

encode a Raft-style version of Multi-Paxos, as described in a

recent comparison of the two protocols [HM20].

4.1 Guided Invariant Discovery

For our first experiment, wemanually translated a TLA
+
spec-

ification of two-phase commit (TPC) into Ivy. The resulting

specification is shown in Figure 4.1.

Our goal was to understand how Ivy’s counterexample-

guided invariant discovery process operates and compare

it to the manual, non-assisted approach. To this end, we

first manually came up with an inductive invariant, clause

by clause. Afterwards, to compare, we used Ivy’s graphical

interface, being presented with counterexamples to induc-

tion and generalising them into invariant clauses, until the

conjunction of the clauses became inductive.
2

The key property in TPC is consistency, stated as follows:

invariant [consistency]

forall X:replica, Y:replica.

~ (reState(X) = aborted & reState(Y) = committed)

This says that replicas are never in conflicting states, i.e., it is
impossible for one replica to have committed the transaction

if any other replica aborted, or vice-versa. It might still be

the case, however, that replicas never make a decision.

This property is invariant, but not inductive. We need to

strengthen it with other clauses until it becomes inductive.

4 Towards Automated Reasoning 40

1 type replica

2 type coordinatorState = {start, done}

3 type replicaState = {working, prepared, aborted,

committed}

4

5 individual coState : coordinatorState

6 function reState(R:replica) : replicaState

7 function sentPreparedMsg(R:replica) : bool

8 function rcvdPrepareFrom(R:replica) : bool

9 individual sentCommitMsg : bool

10 individual sentAbortMsg : bool

11

12 after init {

13 coState := start;

14 reState(R) := working;

15 sentPreparedMsg(R) := false;

16 rcvdPrepareFrom(R) := false;

17 sentCommitMsg := false;

18 sentAbortMsg := false;

19 }

20 action coRcvPrepared(r:replica) = {

21 require coState = start

22 & sentPreparedMsg(r);

23 rcvdPrepareFrom(r) := true;

24 }

25 action coCommit = {

26 require coState = start

27 & forall R. rcvdPrepareFrom(R);

28 coState := done;

29 sentCommitMsg := true;

30 }

31 action coAbort = {

32 require coState = start;

33 coState := done;

34 sentAbortMsg := true;

35 }

36 action rePrepare(r:replica) = {

37 require reState(r) = working;

38 sentPreparedMsg(r) := true;

39 reState(r) := prepared;

40 }

41 action reAbort(r:replica) = {

42 require reState(r) = working;

43 reState(r) := aborted;

44 }

45 action reRcvCommit(r:replica) = {

46 require sentCommitMsg = true;

47 reState(r) := committed;

48 }

49 action reRcvAbort(r:replica) = {

50 require sentAbortMsg = true;

51 reState(r) := aborted;

52 }

Figure 4.1: Ivy description of the

TPC protocol. The protocol has

a single coordinator, whose state

is represented as the singleton

(individual) on line 5. There

are multiple replicas, so we use

a function to represent their

state, mapping from each replica

to its state. Similarly, for each

replica, we store whether it sent

a “prepared” message to the co-

ordinator (line 7), and for the

coordinator, we store whether

it received such a message from
each replica (line 8).Wealso keep

track of whether the coordina-

tor sent the “commit” or “abort”

messages—these are implicitly

broadcast so are represented as

singletons (lines 9 and 10). Ev-

ery action describes a transi-

tion, which can only trigger if its

precondition (require) is satis-
fied, and produces an effect on

the state. The after init dec-

laration (line 12) describes the

initial state of the system.

4 Towards Automated Reasoning 41

1 invariant [send_before_receive]

2 rcvdPrepareFrom(R) -> sentPreparedMsg(R)

3 invariant [decision_mutually_exclusive]

4 ~(sentCommitMsg & sentAbortMsg)

5 invariant [decision_iff_done]

6 (sentCommitMsg | sentAbortMsg) <-> coState = done

7 invariant [commit_implies_sentPrepared]

8 sentCommitMsg -> sentPreparedMsg(R)

9 invariant [sentPrepared_implies_not_working]

10 sentPreparedMsg(R) -> ~(reState(R) = working)

11 invariant [if_prepared_only_coordinator_can_abort]

12 sentPreparedMsg(R) & ~sentAbortMsg -> ~(reState(R) = aborted)

13 invariant [cannot_abort_if_coordinator_committed]

14 sentCommitMsg -> ~(reState(R) = aborted)

15 invariant [cannot_commit_if_coordinator_not_done]

16 ~(coState = done) -> ~(reState(R) = committed)

17 invariant [cannot_commit_if_coordinator_aborted]

18 sentAbortMsg -> ~(reState(R) = committed)

Figure 4.2:Manually discovered invariant clauses for TPC, that together with consistency, are inductive. In

Ivy, identifiers with capital letters (e.g., R) are implicitly universally quantified.

3: Concretely, we are told that

the property is not maintained

by the reAbort, reRcvAbort,

and reRcvCommit transitions.

4: An invariant is an over-
approximation of the set of reach-

able states. To aid understand-

ing when talking about over-

approximations, it often helps

to describe their negations, i.e.,
the states that cannot be reached.

Indeed, as soon as we invoke ivy_check, the tool tells us

that consistency is not inductive.
3
In other words, there exist

states that are consistent but which can transition into states

that are not—called counterexamples to induction (CTIs). The

problem is that the property does not sufficiently constrain

the components of the protocol’s state to establish that no

transition into a bad state can happen. To establish safety, we

need to strengthen it by adding clauses that constrain the

state space sufficiently to eliminate all CTIs.

Intuition. Intuitively, by adding clauses, we are translating

the operational description of the protocol, given in terms of

its transitions, into a static over-approximation of the set of

reachable states. We want to encode operational knowledge,

of the form “this state can transition into that state”, into

static knowledge of the form ”a state like this cannot be

reached”.
4
Interestingly, this is how experts tend to think

about protocols. An invariant captures an understanding

(description) of the system in terms of what states the system

disallows. The invariant is inductive when the description is

closed under transitions—there is no way to “escape” it.

4 Towards Automated Reasoning 42

Figure 4.3: The first CTI re-

turned by Ivy for the TPC speci-

fication. The top half is the pre-

state, whereas the bottom half is

the unsafe post-state after taking

the reAbort transition.

Figure 4.4: A CTI that re-

quires insight to identify the

problem. This state is unreach-

able because the replica cannot

abort when it has already pre-

pared the transaction (implied

by sentPreparedMsg), unless
the coordinator aborts—which it

has not.

5: In Ivy, identifiers with capital

letters are implicitly universally

quantified.

Manual invariant discovery. In line with this intuition,

we manually construct the invariant in Figure 4.2, clause

by clause, gradually adding more structure to our over-

approximation of the set of reachable states, until ivy_check

reports that the conjunction of all clauses is inductive.

Interestingly, these clauses are logical implications that ex-

press the necessary relationships between different portions

of the state, as imposed by the protocol’s transitions. For

instance, the clause on lines 1–2 says that, if the coordi-

nator received a “prepare” message from some replica

R, then it must be the case that R has sent such a mes-

sage.
5
Intuitively, the clause expresses a necessary condition,

sentPreparedMsg(R), that must hold before the transition that

makes rcvdPrepareFrom(R) true can be executed. Indeed, this

is exactly what lines 22–23 in Figure 4.1 express. Similarly,

the equivalence on line 6 expresses that whenever a decision

is made, the coordinator enters the done state in the same

transition. We obtain all invariant clauses by inspecting the

protocol’s transitions and making direct inferences about the

relationship between state components. Because TPC is such

a simple protocol, relatively little creativity is required.

4 Towards Automated Reasoning 43

1 invariant [cannot_commit_while_working]

2 ~(reState(R) = committed & reState(S) = working)

3 invariant [cannot_commit_if_coordinator_aborted]

4 ~(reState(R) = committed & sentAbortMsg)

5 invariant [cannot_commit_if_coordinator_is_not_done]

6 ~(reState(R) = committed & coState = start)

7 invariant [cannot_abort_after_coordinator_done]

8 ~(reState(R) = aborted & sentCommitMsg & coState = done)

9 invariant [cannot_abort_if_prepared_via_sentCommit_unless_coordinator_aborts]

10 ~(reState(R) = aborted & ~sentAbortMsg & sentCommitMsg)

11 invariant [cannot_both_abort_and_commit]

12 ~(sentAbortMsg & sentCommitMsg)

13 invariant [decision_implies_done]

14 ~((sentCommitMsg | sentAbortMsg) & coState = start)

15 invariant [cannot_abort_if_prepared_via_rcvdPr_unless_coordinator_aborts]

16 ~(rcvdPrepareFrom(R) & reState(R) = aborted & ~sentAbortMsg)

17 invariant [cannot_abort_if_prepared_via_sentPr_unless_coordinator_aborts]

18 ~(sentPreparedMsg(R) & reState(R) = aborted & ~sentAbortMsg)

19 invariant [commit_implies_prepared_implies_not_working]

20 ~(reState(R) = working & sentCommitMsg)

21 invariant [cannot_receive_preparedMsg_if_not_sent]

22 ~(rcvdPrepareFrom(R) & ~sentPreparedMsg(R))

23 invariant [cannot_be_working_if_prepared_via_sentPreparedMsg]

24 ~(sentPreparedMsg(R) & reState(R) = working)

Figure 4.5: Invariant clauses for TPC discovered using Ivy’s counterexample-guided process.

6: Following Ivy’s process, we

obtain a more complex invariant,

containing 12 clauses, compared

to the manually obtained invari-

ant, composed of 9 clauses.

Guided invariant discovery. The alternative option with

Ivy is to use its counterexample-guided process to discover

invariants. Given a candidate invariant, initially consisting

of just the safety property, Ivy finds a CTI and presents it

graphically to the user, as in Figure 4.3. This shows a pre-state

allowed by the current invariant, that can transition into an

unsafe post-state. The problem in this case is that replica 0

committed even though replica 1 has not yet prepared the

transaction. In fact, this is not allowed by the protocol. To

eliminate this CTI, we strengthen our invariant with the first

clause (lines 1–2) in Figure 4.5, that capture the fact that this

state is not be reachable in valid TPC executions.

We continue this process, eliminating CTIs one by one until

our invariant becomes inductive.
6
However, the process does

require insight. Particularly, when presented with a CTI like

the one in Figure 4.4, wemust identifywhich parts of the state

exhibit the problem andwhich are incidental to it. If wemake

4 Towards Automated Reasoning 44

7: In I4, the domains (types)

were made finite, but with BMC

we bound the depth towhich the

transition relation is unrolled.

8: The actual process ismore effi-

cient, and is based on diagrams,

the same notion later used by

PDR
∀
[Kar+17].

9: We stress that the Minimize
loop is not automated in the Ivy

implementation as such, but all

the ingredients are present.

a mistake in this, our conjectured clause might be wrong, i.e.,
not actually invariant. If we accept the conjecture anyway,

we will never be able to prove the safety property—we will

simply be presented with CTI after CTI until we realise one

of our previous conjectures was wrong.

To guard against this possibility, Ivy lets us perform bounded

model checking (BMC) to validate our conjectures up to

some transition depth that we choose. For simple protocols

like two-phase commit, a small bound is sufficient to show

that a conjectured clause is not invariant. However, this is

not necessarily the case for more complex protocols, where

counterexamples might manifest only at a depth that is

infeasible for BMC to reach.

Automated invariant guessing. If we are confident that,

for our protocol, counterexamples to candidate clauses are

shallow (as they are in TPC), then we can use Ivy to automate

invariant discovery in a fashion similar to I4 [Ma+19].
7
Con-

cretely, when we are presented with a CTI, we can use Ivy’s

Minimize function, which gives us theminimal generalisation

(i.e., subset of the state) of the CTI that is :-invariant, for a
depth : that we choose, and add the result as our chosen

invariant clause—repeating the process until we obtain an

inductive invariant. In effect,Minimize tries all possible gen-
eralisations

8
of the CTI, checks whether they are invariant

up to depth :, and selects the smallest generalisation that is

:-invariant. Like I4 and PDR
∀
, however, this process can only

find invariant clauses that are universally quantified. Even

with a large BMC depth :, it would not find all invariants

needed to show the safety of, for example, Paxos.

A potentially interesting experiment would be to compare

the effectiveness of this Ivy approach, I4, and PDR
∀
. The

IC3PO paper [GS21a] compares I4 and PDR
∀
and empirically

observes similar effectiveness. It would not be surprising

if this approach, which existed before both PDR
∀
and I4,

9

performs in line with the later approaches.

4 Towards Automated Reasoning 45

1 mutable function current_term(node): term

2 mutable function log_term(node, idx): term

3 mutable function log_value(node, idx): value

4 mutable function last_index(node): idx

5 mutable relation request_vote(node, term, idx)

6 mutable relation append_entries(node, node, term, idx, term, term, value, idx)

Figure 4.6: Selected parts of the state for our mypyvy encoding of Multi-Paxos.

10: In the course of this project,

we identified a number of bugs

inmypyvy,whichwe reported to

the maintainers. We also devel-

oped a Visual Studio Code syn-

tax highlighting extension for

both Ivy and mypyvy.

sort node

sort term

sort idx

sort value

sort quorum

Figure 4.7: Sorts used in our en-

coding of Multi-Paxos. quorum
is an artificial sort, which does

not exist in the usual description

of Paxos, butwhichwe introduce

as part of our encoding of the

protocol into first-order logic.

4.2 Challenges of EPR Encoding

For our second experiment, we wanted to better understand

what challenges arise when trying to encode a complex pro-

tocol into extended EPR, and more specifically, we wanted to

see what might be required to perform an automated trans-

lation from a language like TLA
+
into a decidable logic. This

is ongoing work, so we only give a high-level description.

Our case study is a variant of Multi-Paxos, described using

the style and abstractions of Raft [HM20].

Instead of Ivy, we use another tool, mypyvy,
10
whose specifi-

cation language is closer to TLA
+
. Transitions in mypyvy are

specified as two-state logical formulas formulas (in first-order

logic), as opposed to Ivy’s more imperative style.

Encoding the specification. To encode Multi-Paxos into

mypyvy, we use the English language description of the

protocol as a reference.

First, we identify the different components of the protocol

state and what their types are. Each node in Multi-Paxos

stores its current term, a log of entries, and various indices,

e.g., the highest committed index in the log. Moreover, nodes

can send messages to each other, containing, for instance,

node IDs, terms, indices, and values.We define these types as

first-order logic sorts, as shown in the first 4 lines of Figure 4.7.

Then, we use these sorts to specify the various components

of the state, partially shown in Figure 4.6.

To see what challenges automated translation might run into,

we translate the state components into first-order logic as

4 Towards Automated Reasoning 46

1 immutable relation member(node, quorum)

2 axiom [intersection] forall Q1, Q2. exists N.

3 member(N, Q1) & member(N, Q2)

Figure 4.8: Axiomatisation of

quorums in FOL, capturing the

intersection property.

1 transition commit(n: node, maj_idx: idx, q: quorum)

2 modifies commit_index

3 & is_leader(n)

4 & !index_le(maj_idx, commit_index(n))

5 & index_le(maj_idx, last_index(n))

6 & (forall N. member(N, q) ->

7 index_le(maj_idx, match_index(n, N)) | N = n)

8 & set_commit_index(n, maj_idx)

Figure 4.9: The commit action

in Multi-Paxos. A leader (line 3)

can advance its commit index

to maj_idx (line 8), an index

greater than its current commit

index (line 4), if it knows that a

quorum of nodes (line 6) have

the same content in their logs up

to maj_idx (line 7).

11: Or, equivalently, the node’s

identifier.

12: In a typical TLA
+
spec, the

message soup contains all kinds

of messages in one set. This

could be represented as a sin-

gle relation whose components

are the superset of all message

fields (with some default value

for unused fields), but splitting

the soup is more principled.

13: Corresponding to the ≤ op-

erator. We can define other com-

parison operators based on this,

e.g., G > H ≡ ¬(G ≤ H).

directly as possible. Concretely, we encode each component

of a node’s state as a function from the node
11
to the state

component’s value for that particular node. For example, the

current term of a node (line 1) is a function that takes a node

as argument and returns that node’s term.

To encode logs, which are mappings from indices to pairs

consisting of a term and a value, we split the pair into two

separate components, log_term and log_value, and encode

them as functions that take a node and index as argument and

return the respective term or value (lines 2–3 in Figure 4.6).

We encode the set of sent messages (“message soup”) as four

different relations, one for each kind of message, as shown in

lines 5–6 of Figure 4.6.
12

Axiomatising orders and quorums. Not everything can

be expressed in first-order logic, so to encode the protocol’s

transitions, we need some insight. Specifically, FOL cannot

express all forms of either integer arithmetic or quantification

over sets. Nonetheless, Multi-Paxos uses integer addition (to

increment indices), comparison (for terms and indices), and

set cardinalities (to determine if a quorum was reached).

To express these constructs in FOL, we need to axiomatise

them. Concretely, to express comparisons between terms,

for instance, we introduce a new relation index_le13 and

axiomatise it as a total order that is reflexive, transitive,

4 Towards Automated Reasoning 47

14: A number 1 is the successor

of the number 0 iff 1 > 0 and

∀=, 1 > = ⇒ = ≤ 0.

15: To stress the point: we have

not yet encoded any properties

of the protocol, or tried to prove

anything. We just specified its

transitions, yet still needed to in-

troduce an axiomatisation.Why?

16: Or, in general, relation.

17: An oracle that returns arbi-

trary output is not helpful.

and antisymmetric. We then use this order to define incre-

mentation.
14
We encode sets of nodes as a new sort, quorum,

introduce a new relation, member, to express set membership,

and axiomatise the notion of majority used byMulti-Paxos as

the quorum intersection property, as shown in Figure 4.8.

This suffices to encode the protocol’s state and all its transi-

tions into extended EPR, as shown in Figure 4.9.

Why is axiomatisation necessary? In a sense, it is not sur-

prising that we can encode the protocol in a decidable logic.

After all, the protocol’s transitions are all decidable—it must

be the case than given a state, you can compute (i.e., decide)
the next state, otherwise the protocol is ill-specified. Why did

we need to axiomatise things, then?
15
It is a key question.

The answer is that real systems operate on finite data. Our

EPR specification, however, has potentially infinite sorts. We

can always compare finite numbers, but a comparison be-

tween infinite numbers might never terminate. Similarly, we

cannot express set cardinalities because sets might be infinite,

so computing their cardinality might never terminate.

When we axiomatise, in effect, we are adding an oracle to
our specification, a magic function

16
that terminates on any

input, even if it is infinite. This solves thedecidability problem.

However, our oracle is only useful if we can constrain its

output—which we do by adding axioms.
17
If we can describe

the output of the oracle in extended EPR, then our transitions

are decidable even for infinite (unbounded) inputs.

Quantifier alternations. EPR formulas can only contain

constant symbols and relations, and must start with a ∃∗∀∗

quantifier prefix in prenex normal form.

Our specification, however, uses functions and includes ∀∗∃∗

formulas such as the intersection axiom in Figure 4.8. Ver-

ification conditions are nonetheless decidable because we

exhibit only a restricted form of quantifier alternations.

4 Towards Automated Reasoning 48

1 invariant [committed_implies_quorum_voted]

2 forall i:idx, et:term, ev:value.

3 (exists n:node. committed(n, i, et, ev)) ->

4 (exists Q:quorum. forall n:node. member(n, Q) -> voted(n, i, et, ev))

Figure 4.10: An invariant like this one—which says that if any node committed a value at some index 8 in
some term (line 3), then a majority of nodes have in their logs at index 8, the same value and term (line 4)—is

necessary to show safety of Multi-Paxos. However, this introduces cycles in our stratification graph.

Figure 4.11: Stratification graph

for our specification. Multiple

functions or properties might

correspond to a given edge, but

only one is named on the edge.

18: The extension permits the

use of functions and quantifier

alternations, as long as the strat-

ification graph has no cycles.

19: Recall that we translated the

specification in the most direct

way, similar to how an auto-

mated tool might do it.

[Pad+17]: Padon et al. (2017),

‘Paxos made EPR’

20: We leave the question to fu-

ture work.

Sort stratification. We can see that our quantifier alterna-

tions are of a restricted form by drawing the stratification
graph for our specification, as shown in Figure 4.11. The nodes

of the graph are the sorts in our specification, and we draw a

directed ∀∃ edge from sort � to sort �:

I Quantifier edges—for every ∃1 : � that occurs within

the scope of a ∀0 : �, and

I Function edges—if � is one of the components of the

domain of a function and � is its codomain.

For example, the intersection axiom in Figure 4.8 produces an

edge between quorum and node because exists N:node occurs

within the scope of forall Q1:quorum. Similarly, log_value

(node, idx):value produces two edges, one from node to

value, and another from idx to value.

If we go through our specification and draw the edges accord-

ingly, we obtain the graph in Figure 4.11. Because this graph

has no cycles, even though our specification includes func-

tions and ∀∗∃∗ quantifier alternations, verification conditions

are still decidable—they fall within extended EPR.18

EPR verification. However, we have not yet stated any

properties. We just specified transitions. Sadly, we cannot

automatically verify the safety of this specification as it is

written.
19

Invariants that are required to show that Multi-

Paxos is safe, such as the one in Figure 4.10, introduce cycles in

our stratification graph, making verification undecidable.

The solution is to rewrite the spec to use relations instead

of functions, such that edges in the graph come only from

invariants and axioms, not from the state description [Pad+17].

However, it is unclear whether this can be automated.
20

1: We reiterate our belief that,

in the long-term, the benefit of

formal methods will also come

from tools built around formal

descriptions (for synthesis and

repair, invariant inference, sym-

bolic execution, etc.), not strictly
from “correctness” guarantees.

Conclusion 5
In this chapter, we review thematerial we covered and briefly

reflect on potential avenues for future research.

The problem. We began by showing that it is common for

protocols, even those designed by experts, to have errors.

Numerous examples attest to this. Moreover, implementa-

tions are very buggy indeed, with even popular, well-tested

systems exhibiting hundreds of critical bugs. The problem is

that distributed protocols and systems are difficult to reason

about and it is easy to make mistakes.

The state of the art. To guard against human errors, it is

helpful to develop computer-encoded formal specifications.
The key is that, once we have a formal description of a

system, it becomes possible to automatically manipulate it

in many ways.
1
We can systematically test it with a model

checker, or connect it at runtimewith an implementation, and

check for conformance between the two. But testing is not

complete, so if wewant higher levels of assurance, we need to

employ methods for verification. However, proving systems

correct using interactive methods requires both insight and

significant effort. Semi-automated methods use solvers to

ease the burden of writing proofs, but still require insight

to discover inductive invariants. However, tools can assist in

discovering invariants. Impressively, automated reasoning

tools can both discover invariants and prove safety properties

without human interaction, although with limitations.

The future. We envision that formal techniques will con-

tinue to evolve. The level of automation will increase, spec-

ifications and their proofs will be more tightly connected

with implementations, with the connection automatically

maintained as both change, and new tools like for program

synthesis and repair will improve developer productivity.

Bibliography

[Abr+17] Ittai Abraham, Guy Gueta, Dahlia Malkhi, Lorenzo Alvisi, Rama Kotla, and

Jean-Philippe Martin. 2017. Revisiting Fast Practical Byzantine Fault Tolerance.

arXiv:1712.01367 [cs], (December 2017). arXiv: 1712.01367. Retrieved 09/06/2021

from (cited on pages 2, 5).

[Abr+19] Ittai Abraham, Dahlia Malkhi, Kartik Nayak, Ling Ren, and Maofan Yin. 2019.

Sync HotStuff: Simple and Practical Synchronous State Machine Replication.

Technical report 270. Retrieved 09/16/2021 from (cited on page 2).

[Abr+20] Ittai Abraham, Dahlia Malkhi, Kartik Nayak, Ling Ren, and Maofan Yin. 2020.

Sync HotStuff: Simple and Practical Synchronous State Machine Replication.

en. In 2020 IEEE Symposium on Security and Privacy (SP). IEEE, San Francisco,

CA, USA, (May 2020), 106–118. doi: 10.1109/SP40000.2020.00044. Retrieved

10/12/2020 from (cited on page 36).

[Alf+20] Mohammed Alfatafta, Basil Alkhatib, Ahmed Alquraan, and Samer Al-

Kiswany. 2020. Toward aGeneric Fault Tolerance Technique for Partial Network

Partitioning. en, 19 (cited on page 10).

[Alv+16] Peter Alvaro, Kolton Andrus, Chris Sanden, Casey Rosenthal, Ali Basiri, and

Lorin Hochstein. 2016. Automating Failure Testing Research at Internet Scale.

en. In Proceedings of the Seventh ACM Symposium on Cloud Computing. ACM,

Santa Clara CA USA, (October 2016), 17–28. doi: 10.1145/2987550.2987555.

Retrieved 03/26/2021 from (cited on page 17).

[ARH15] Peter Alvaro, Joshua Rosen, and Joseph M. Hellerstein. 2015. Lineage-driven

Fault Injection. In Proceedings of the 2015 ACM SIGMOD International Conference
on Management of Data (SIGMOD ’15). Association for Computing Machinery,

New York, NY, USA, (May 2015), 331–346. doi: 10.1145/2723372.2723711.

Retrieved 09/27/2021 from (cited on page 17).

[AT17] Peter Alvaro and Severine Tymon. 2017. Abstracting the Geniuses Away from

Failure Testing. en. Communications of the ACM, 27 (cited on pages 12, 17).

[AZ15] Brandon Amos and Huanchen Zhang. 2015. 15-812 Term Paper: Specifying

and proving cluster membership for the Raft distributed consensus algorithm.

en. Technical report, 46 (cited on pages 2, 6).

https://doi.org/10.1109/SP40000.2020.00044
https://doi.org/10.1145/2987550.2987555
https://doi.org/10.1145/2723372.2723711

[Aru+17] Balaji Arun, Sebastiano Peluso, Roberto Palmieri, Giuliano Losa, and Binoy

Ravindran. 2017. SpeedingupConsensus byChasingFastDecisions. In 2017 47th
Annual IEEE/IFIP International Conference on Dependable Systems and Networks
(DSN). ISSN: 2158-3927. (June 2017), 49–60. doi: 10.1109/DSN.2017.35 (cited

on page 2).

[AMW16] Noran Azmy, Stephan Merz, and Christoph Weidenbach. 2016. A Rigorous

Correctness Proof for Pastry. en. In Abstract State Machines, Alloy, B, TLA, VDM,
and Z. Volume 9675. Michael Butler, Klaus-Dieter Schewe, Atif Mashkoor, and

Miklos Biro, editors. Series Title: Lecture Notes in Computer Science. Springer

International Publishing, Cham, 86–101. doi: 10.1007/978-3-319-33600-8_5.

Retrieved 09/07/2021 from (cited on page 2).

[AMW18] Noran Azmy, Stephan Merz, and Christoph Weidenbach. 2018. A machine-

checked correctness proof for Pastry. en. Science of Computer Programming,
158, (June 2018), 64–80. doi: 10.1016/j.scico.2017.08.003. Retrieved

09/07/2021 from (cited on pages 2, 24).

[Ban+20] Shehar Bano, Alberto Sonnino, Andrey Chursin, Dmitri Perelman, and Dahlia

Malkhi. 2020. Twins:White-GloveApproach forBFTTesting. en. arXiv:2004.10617
[cs], (April 2020). arXiv: 2004.10617. Retrieved 09/25/2021 from (cited on

page 18).

[Bee+96] Ilan Beer, Shoham Ben-david, Cindy Eisner, Avner Landver, and Avner L. 1996.

RuleBase: an Industry-Oriented Formal Verification Tool. In In 33rd Design
Automation Conference, 655–660 (cited on page 20).

[Bor+21] James Bornholt, Rajeev Joshi, Vytautas Astrauskas, Brendan Cully, Bernhard

Kragl, Seth Markle, Kyle Sauri, Drew Schleit, Grant Slatton, and Serdar Tasiran.

2021. Using Lightweight Formal Methods to Validate a Key-Value Storage

Node in Amazon S3. en, 15 (cited on pages 12, 13, 35).

[Bra11] Aaron R. Bradley. 2011. SAT-Based Model Checking without Unrolling. en. In

Verification,Model Checking, and Abstract Interpretation. Volume 6538. Ranjit Jhala

and David Schmidt, editors. Series Title: Lecture Notes in Computer Science.

Springer Berlin Heidelberg, Berlin, Heidelberg, 70–87. doi: 10.1007/978-3-

642-18275-4_7. Retrieved 06/08/2021 from (cited on pages 27, 28, 32).

[Buc16] Ethan Buchman. 2016. Tendermint: Byzantine Fault Tolerance in the Age of
Blockchains. PhD thesis. University of Guelph, Guelph, Ontario, Canada, (June

2016) (cited on page 2).

https://doi.org/10.1109/DSN.2017.35
https://doi.org/10.1007/978-3-319-33600-8_5
https://doi.org/10.1016/j.scico.2017.08.003
https://doi.org/10.1007/978-3-642-18275-4_7
https://doi.org/10.1007/978-3-642-18275-4_7

[But+20] Vitalik Buterin, Diego Hernandez, Thor Kamphefner, Khiem Pham, Zhi Qiao,

Danny Ryan, Juhyeok Sin, Ying Wang, and Yan X. Zhang. 2020. Combining

GHOST and Casper. arXiv:2003.03052 [cs], (May 2020). arXiv: 2003.03052.

Retrieved 09/16/2021 from (cited on page 2).

[CV17] Christian Cachin and Marko Vukolić. 2017. Blockchain Consensus Protocols

in the Wild. arXiv:1707.01873 [cs], (July 2017). arXiv: 1707.01873. Retrieved

09/16/2021 from (cited on page 2).

[CCR04] M. Castro, M. Costa, and A. Rowstron. 2004. Performance and dependability

of structured peer-to-peer overlays. en. In International Conference on Dependable
Systems and Networks, 2004. IEEE, Florence, Italy, 9–18. doi: 10.1109/DSN.2004.

1311872. Retrieved 09/13/2021 from (cited on page 5).

[CL99] Miguel Castro and Barbara Liskov. 1999. Practical Byzantine Fault Tolerance.

en. In (February 1999), 14 (cited on page 36).

[CG18] Sagar Chaki and Arie Gurfinkel. 2018. BDD-Based Symbolic Model Checking.

en. In Handbook of Model Checking. Edmund M. Clarke, Thomas A. Henzinger,

Helmut Veith, and Roderick Bloem, editors. Springer International Publishing,

Cham, 219–245. doi: 10.1007/978-3-319-10575-8_8. Retrieved 09/28/2021

from (cited on page 20).

[CLS16] SakshamChand, YanhongA. Liu, and Scott D. Stoller. 2016. Formal Verification

of Multi-Paxos for Distributed Consensus. en. In FM 2016: Formal Methods
(Lecture Notes in Computer Science). John Fitzgerald, Constance Heitmeyer,

Stefania Gnesi, and Anna Philippou, editors. Springer International Publishing,

Cham, 119–136. doi: 10.1007/978-3-319-48989-6_8 (cited on page 24).

[CGR07] Tushar D. Chandra, Robert Griesemer, and Joshua Redstone. 2007. Paxos made

live: an engineering perspective. en. In Proceedings of the twenty-sixth annual
ACM symposium on Principles of distributed computing - PODC ’07. ACM Press,

Portland, Oregon, USA, 398–407. doi: 10.1145/1281100.1281103. Retrieved

01/19/2021 from (cited on page 2).

[Cha+10] Kaustuv Chaudhuri, Damien Doligez, Leslie Lamport, and StephanMerz. 2010.

Verifying Safety Properties with the TLA+ Proof System. en. In Automated
Reasoning (Lecture Notes in Computer Science). Jürgen Giesl and Reiner

Hähnle, editors. Springer, Berlin, Heidelberg, 142–148. doi: 10.1007/978-3-

642-14203-1_12 (cited on page 24).

[Cha+08] Kaustuv C. Chaudhuri, Damien Doligez, Leslie Lamport, and Stephan Merz.

2008. A TLA+ Proof System. arXiv:0811.1914 [cs], (November 2008). arXiv:

0811.1914. Retrieved 10/01/2021 from (cited on page 24).

https://doi.org/10.1109/DSN.2004.1311872
https://doi.org/10.1109/DSN.2004.1311872
https://doi.org/10.1007/978-3-319-10575-8_8
https://doi.org/10.1007/978-3-319-48989-6_8
https://doi.org/10.1145/1281100.1281103
https://doi.org/10.1007/978-3-642-14203-1_12
https://doi.org/10.1007/978-3-642-14203-1_12

[Che+15] Haogang Chen, Daniel Ziegler, Tej Chajed, AdamChlipala, M. Frans Kaashoek,

and Nickolai Zeldovich. 2015. Using Crash Hoare logic for certifying the FSCQ

file system. In Proceedings of the 25th Symposium on Operating Systems Principles.
Association for Computing Machinery, New York, NY, USA, (October 2015),

18–37. Retrieved 07/27/2021 from (cited on page 8).

[Chu+18] Andrey Chudnov, Nathan Collins, Byron Cook, Joey Dodds, Brian Huffman,

ColmMacCárthaigh, StephenMagill, EricMertens, EricMullen, Serdar Tasiran,

Aaron Tomb, and Eddy Westbrook. 2018. Continuous Formal Verification of

Amazon s2n. en. In Computer Aided Verification (Lecture Notes in Computer

Science). Hana Chockler and Georg Weissenbacher, editors. Springer Inter-

national Publishing, Cham, 430–446. doi: 10.1007/978-3-319-96142-2_26

(cited on page 13).

[Cla+96] E. Clarke, K. McMillan, S. Campos, and V. Hartonas-Garmhausen. 1996.

Symbolic model checking. en. In Computer Aided Verification (Lecture Notes in

Computer Science). Rajeev Alur and Thomas A. Henzinger, editors. Springer,

Berlin, Heidelberg, 419–422. doi: 10.1007/3-540-61474-5_93 (cited on

page 19).

[Cla+99] E.M. Clarke, O. Grumberg, M. Minea, and D. Peled. 1999. State space reduction

using partial order techniques. en. International Journal on Software Tools for
Technology Transfer (STTT), 2, 3, (November 1999), 279–287. doi: 10.1007/

s100090050035. Retrieved 09/25/2021 from (cited on page 18).

[Cla+00] Edmund Clarke, Orna Grumberg, Somesh Jha, Yuan Lu, and Helmut Veith.

2000. Counterexample-Guided Abstraction Refinement. en. In Computer Aided
Verification (Lecture Notes in Computer Science). E. Allen Emerson and

Aravinda Prasad Sistla, editors. Springer, Berlin, Heidelberg, 154–169. doi:

10.1007/10722167_15 (cited on page 20).

[Cla+03] Edmund Clarke, Orna Grumberg, Somesh Jha, Yuan Lu, and Helmut Veith.

2003. Counterexample-guided abstraction refinement for symbolic model

checking. Journal of the ACM, 50, 5, (September 2003), 752–794. doi: 10.1145/

876638.876643. Retrieved 10/04/2021 from (cited on pages 27, 28).

[Cor20] Jay Corbett. 2020. Randomized Testing of Cloud Spanner. (August 2020).

Retrieved 09/25/2021 from https : / / medium . com / @jcorbett _ 26889 /

randomized-testing-of-cloud-spanner-5286f1eaba75 (cited on page 16).

[Cou+12] Denis Cousineau, Damien Doligez, Leslie Lamport, Stephan Merz, Daniel

Ricketts, and Hernán Vanzetto. 2012. TLA+ Proofs. en. In FM 2012: Formal
Methods (Lecture Notes in Computer Science). Dimitra Giannakopoulou and

https://doi.org/10.1007/978-3-319-96142-2_26
https://doi.org/10.1007/3-540-61474-5_93
https://doi.org/10.1007/s100090050035
https://doi.org/10.1007/s100090050035
https://doi.org/10.1007/10722167_15
https://doi.org/10.1145/876638.876643
https://doi.org/10.1145/876638.876643
https://medium.com/@jcorbett_26889/randomized-testing-of-cloud-spanner-5286f1eaba75
https://medium.com/@jcorbett_26889/randomized-testing-of-cloud-spanner-5286f1eaba75

Dominique Méry, editors. Springer, Berlin, Heidelberg, 147–154. doi: 10.1007/

978-3-642-32759-9_14 (cited on page 24).

[Dai+18] Ting Dai, Jingzhu He, Xiaohui Gu, and Shan Lu. 2018. Understanding Real-

World Timeout Problems in Cloud Server Systems. In 2018 IEEE International
Conference on Cloud Engineering (IC2E). (April 2018), 1–11. doi: 10.1109/IC2E.

2018.00022 (cited on page 9).

[DHS20] A. Jesse Jiryu Davis, Max Hirschhorn, and Judah Schvimer. 2020. Extreme

modelling in practice. en. Proceedings of the VLDB Endowment, 13, 9, (May

2020), 1346–1358. doi: 10.14778/3397230.3397233. Retrieved 03/30/2021

from (cited on page 21).

[Dem18] Murat Demirbas. 2018. TLA+ Specifications of the Consistency Guarantees

Provided by Cosmos DB. en-US. (November 2018). Retrieved 09/29/2021 from

https://www.microsoft.com/en-us/research/video/tla-specifications-

of-the-consistency-guarantees-provided-by-cosmos-db/ (cited on

pages 12, 20).

[DF93] JeremyDick andAlain Faivre. 1993. Automating the generation and sequencing

of test cases from model-based specifications. en. In FME ’93: Industrial-
Strength Formal Methods (Lecture Notes in Computer Science). James C. P.

Woodcock and Peter G. Larsen, editors. Springer, Berlin, Heidelberg, 268–284.

doi: 10.1007/BFb0024651 (cited on page 21).

[DPL15] Sisi Duan, Sean Peisert, and Karl N. Levitt. 2015. hBFT: Speculative Byzantine

Fault Tolerance withMinimumCost. IEEE Transactions on Dependable and Secure
Computing, 12, 1, (January 2015), 58–70. Conference Name: IEEE Transactions

on Dependable and Secure Computing. doi: 10.1109/TDSC.2014.2312331

(cited on page 2).

[EMB11] Niklas Een, Alan Mishchenko, and Robert Brayton. 2011. Efficient Implementa-

tion of Property Directed Reachability. en, 10 (cited on pages 27, 28).

[Eir96] A.T. Eiriksson. 1996. Integrating formal verification methods with a conven-

tional project design flow. In 33rd Design Automation Conference Proceedings,
1996. ISSN: 0738-100X. (June 1996), 666–671. doi: 10.1109/DAC.1996.545658

(cited on page 20).

[Ene+21] Vitor Enes, Carlos Baquero, Alexey Gotsman, and Pierre Sutra. 2021. Efficient

replication via timestamp stability. en. In Proceedings of the Sixteenth European
Conference on Computer Systems. ACM, Online Event United Kingdom, (April

2021), 178–193. doi: 10.1145/3447786.3456236. Retrieved 09/16/2021 from

(cited on page 2).

https://doi.org/10.1007/978-3-642-32759-9_14
https://doi.org/10.1007/978-3-642-32759-9_14
https://doi.org/10.1109/IC2E.2018.00022
https://doi.org/10.1109/IC2E.2018.00022
https://doi.org/10.14778/3397230.3397233
https://www.microsoft.com/en-us/research/video/tla-specifications-of-the-consistency-guarantees-provided-by-cosmos-db/
https://www.microsoft.com/en-us/research/video/tla-specifications-of-the-consistency-guarantees-provided-by-cosmos-db/
https://doi.org/10.1007/BFb0024651
https://doi.org/10.1109/TDSC.2014.2312331
https://doi.org/10.1109/DAC.1996.545658
https://doi.org/10.1145/3447786.3456236

[Fel+19] Yotam M. Y. Feldman, James R. Wilcox, Sharon Shoham, and Mooly Sagiv.

2019. Inferring Inductive Invariants from Phase Structures. Technical report.

arXiv: 1905.07739. (May 2019). Retrieved 06/15/2021 from (cited on pages 14,

39).

[FGL05] Cormac Flanagan, Patrice Godefroid, and Bell Laboratories. 2005. Dynamic

Partial-Order Reduction for Model Checking Software. en. In 12 (cited on

page 18).

[Fon+17] Pedro Fonseca, Kaiyuan Zhang, XiWang, andArvindKrishnamurthy. 2017. An

Empirical Study on the Correctness of Formally Verified Distributed Systems.

In Proceedings of the Twelfth European Conference on Computer Systems. ACM
Press, 328–343. Retrieved 03/01/2019 from (cited on pages 11, 12).

[Gan+17] Aishwarya Ganesan, Ramnatthan Alagappan, Andrea C Arpaci-Dusseau, and

Remzi H Arpaci-Dusseau. 2017. Redundancy Does Not Imply Fault Tolerance:

Analysis of Distributed Storage Reactions to Single Errors and Corruptions.

en, 19 (cited on page 10).

[Gao+18] Yu Gao, Wensheng Dou, Feng Qin, Chushu Gao, Dong Wang, Jun Wei, Ruirui

Huang, Li Zhou, andYongmingWu. 2018. An empirical study on crash recovery

bugs in large-scale distributed systems. en. In Proceedings of the 2018 26th ACM
Joint Meeting on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering. ACM, Lake Buena Vista FL USA, (October

2018), 539–550. doi: 10.1145/3236024.3236030. Retrieved 08/31/2021 from

(cited on page 8).

[GS19] Aman Goel and Karem Sakallah. 2019. Model Checking of Verilog RTL Using

IC3 with Syntax-Guided Abstraction. en. In NASA Formal Methods (Lecture
Notes in Computer Science). JuliaM. Badger andKristin Yvonne Rozier, editors.

Springer International Publishing, Cham, 166–185. doi: 10.1007/978-3-030-

20652-9_11 (cited on page 30).

[GS20] Aman Goel and Karem Sakallah. 2020. AVR: Abstractly Verifying Reachability.

en. In Tools and Algorithms for the Construction and Analysis of Systems (Lecture
Notes in Computer Science). Armin Biere and David Parker, editors. Springer

International Publishing, Cham, 413–422. doi: 10.1007/978-3-030-45190-

5_23 (cited on page 30).

[GS21a] Aman Goel and Karem A. Sakallah. 2021. On Symmetry and Quantification: A

New Approach to Verify Distributed Protocols. arXiv:2103.14831 [cs], 12673,
131–150. arXiv: 2103.14831. doi: 10.1007/978-3-030-76384-8_9. Retrieved

08/06/2021 from (cited on pages 30, 33, 35, 44).

https://doi.org/10.1145/3236024.3236030
https://doi.org/10.1007/978-3-030-20652-9_11
https://doi.org/10.1007/978-3-030-20652-9_11
https://doi.org/10.1007/978-3-030-45190-5_23
https://doi.org/10.1007/978-3-030-45190-5_23
https://doi.org/10.1007/978-3-030-76384-8_9

[GS21b] Aman Goel and Karem A. Sakallah. 2021. Towards an Automatic Proof

of Lamport’s Paxos. arXiv:2108.08796 [cs], (August 2021). arXiv: 2108.08796.
Retrieved 08/25/2021 from (cited on page 33).

[GG75] John B. Goodenough and Susan L. Gerhart. 1975. Toward a theory of test

data selection. In Proceedings of the international conference on Reliable software.
Association for Computing Machinery, New York, NY, USA, (April 1975),

493–510. doi: 10.1145/800027.808473. Retrieved 09/23/2021 from (cited on

page 15).

[Gra+11] A.Gravell, Y.Howard, J. C.Augusto,C. Ferreira, andS.Gruner. 2011.Concurrent

Development of Model and Implementation. arXiv:1111.2826 [cs], (November

2011). arXiv: 1111.2826. Retrieved 03/31/2021 from (cited on page 21).

[Gun+14] Haryadi S. Gunawi, Mingzhe Hao, Tanakorn Leesatapornwongsa, Tiratat

Patana-anake, Thanh Do, Jeffry Adityatama, Kurnia J. Eliazar, Agung Laksono,

Jeffrey F. Lukman, Vincentius Martin, and Anang D. Satria. 2014. What Bugs

Live in the Cloud? A Study of 3000+ Issues in Cloud Systems. In Proceedings of
the ACMSymposium on Cloud Computing (SOCC ’14). Association for Computing

Machinery, NewYork, NY, USA, (November 2014), 1–14. doi: 10.1145/2670979.

2670986. Retrieved 09/29/2020 from (cited on page 7).

[Gur15] Arie Gurfinkel. IC3, PDR, and Friends. Fifth Summer School on Formal

Techniques, (2015). Retrieved 08/06/2021 from (cited on page 27).

[Hae+05] Andreas Haeberlen, Jeff Hoye, Alan Mislove, and Peter Druschel. 2005. Con-

sistent Key Mapping in Structured Overlays. Technical report TR05-456. Rice

University, Houston, Texas, (August 2005), 6 (cited on page 5).

[Hal20] JordanHalterman. 2020. Real-TimeConformanceMonitoringwith TLC:APost-

Mortem. Reddit Post. (March 2020). Retrieved 09/29/2021 from www.reddit.

com/r/tlaplus/comments/fg4741/realtime_conformance_monitoring_

with_tlc_a/ (cited on pages 12, 21).

[Han+21] Travis Hance, Marĳn Heule, Ruben Martins, and Bryan Parno. 2021. Finding

Invariants of Distributed Systems: It’s a Small (Enough) World After All. en. In

17 (cited on pages 32, 33).

[Has15] Mazdak Hashemi. 2015. How we break things at Twitter: failure testing.

(December 2015). Retrieved 09/27/2021 from https : / / blog . twitter .

com/engineering/en_us/a/2015/how-we-break-things-at-twitter-

failure-testing (cited on page 16).

https://doi.org/10.1145/800027.808473
https://doi.org/10.1145/2670979.2670986
https://doi.org/10.1145/2670979.2670986
www.reddit.com/r/tlaplus/comments/fg4741/realtime_conformance_monitoring_with_tlc_a/
www.reddit.com/r/tlaplus/comments/fg4741/realtime_conformance_monitoring_with_tlc_a/
www.reddit.com/r/tlaplus/comments/fg4741/realtime_conformance_monitoring_with_tlc_a/
https://blog.twitter.com/engineering/en_us/a/2015/how-we-break-things-at-twitter-failure-testing
https://blog.twitter.com/engineering/en_us/a/2015/how-we-break-things-at-twitter-failure-testing
https://blog.twitter.com/engineering/en_us/a/2015/how-we-break-things-at-twitter-failure-testing

[Haw+15] Chris Hawblitzel, Jon Howell, Manos Kapritsos, Jacob R. Lorch, Bryan Parno,

Michael L. Roberts, Srinath Setty, and Brian Zill. 2015. IronFleet: proving

practical distributed systems correct. In Proceedings of the 25th Symposium on
Operating Systems Principles - SOSP ’15. ACM Press. Retrieved 04/08/2019 from

(cited on pages 11, 12, 24, 25, 34).

[Hoc14] EzraHoch. 2014.Configuration changes. (February 2014). Retrieved09/09/2021

from https://groups.google.com/g/raft-dev/c/xux5HRxH3Ic/m/mz_PDK-

qMJgJ (cited on pages 2, 6).

[Hol97] Gerard J. Holzmann. 1997. The model checker SPIN. en. IEEE Transactions on
Software Engineering, 23, 5, (May 1997), 279–295. doi: 10.1109/32.588521.

Retrieved 09/28/2021 from (cited on page 19).

[Hol18] Gerard J. Holzmann. 2018. Explicit-State Model Checking. en. In Handbook of
Model Checking. Edmund M. Clarke, Thomas A. Henzinger, Helmut Veith, and

Roderick Bloem, editors. Springer International Publishing, Cham, 153–171.

doi: 10.1007/978-3-319-10575-8_5. Retrieved 09/28/2021 from (cited on

page 19).

[HA20] Heidi Howard and Ittai Abraham. 2020. Raft does not Guarantee Liveness

in the face of Network Faults. en. (December 2020). Retrieved 05/07/2021

from https://decentralizedthoughts.github.io/2020-12-12-raft-

liveness-full-omission/ (cited on pages 2, 6).

[HM20] Heidi Howard and Richard Mortier. 2020. Paxos vs Raft: Have we reached

consensus on distributed consensus? en. arXiv:2004.05074 [cs], (April 2020).

arXiv: 2004.05074. Retrieved 04/28/2020 from (cited on pages 5, 14, 39, 45).

[How+11] Yvonne Howard, Stefan Gruner, Andrew M Gravell, Carla Ferreira, and Juan

Carlos Augusto. 2011. Model-Based Trace-Checking. en. Technical report.

(November 2011), 14 (cited on page 21).

[Jac02] Daniel Jackson. 2002. Alloy: a lightweight object modelling notation. ACM
Transactions on Software Engineering andMethodology, 11, 2, (April 2002), 256–290.

doi: 10.1145/505145.505149. Retrieved 10/01/2021 from (cited on page 26).

[JSS00] Daniel Jackson, Ian Schechter, and Ilya Shlyakhter. 2000. Alcoa: the Alloy

constraint analyzer. Technical report. Journal Abbreviation: Proceedings -

International Conference on Software Engineering Pages: 733 Publication Title:

Proceedings - International Conference on Software Engineering. (February

2000). doi: 10.1109/ICSE.2000.870482 (cited on page 20).

[Jan+97] Jae-young Jang, Shaz Qadeer, Matt Kaufmann, and Carl Pixley. 1997. Formal

verification of FIRE: A case study. In In DAC, 173–177 (cited on page 20).

https://groups.google.com/g/raft-dev/c/xux5HRxH3Ic/m/mz_PDK-qMJgJ
https://groups.google.com/g/raft-dev/c/xux5HRxH3Ic/m/mz_PDK-qMJgJ
https://doi.org/10.1109/32.588521
https://doi.org/10.1007/978-3-319-10575-8_5
https://decentralizedthoughts.github.io/2020-12-12-raft-liveness-full-omission/
https://decentralizedthoughts.github.io/2020-12-12-raft-liveness-full-omission/
https://doi.org/10.1145/505145.505149
https://doi.org/10.1109/ICSE.2000.870482

[JB83] C. Jard and G. v. Bochmann. 1983. An approach to testing specifications. ACM
SIGPLAN Notices, 18, 8, (March 1983), 53–59. doi: 10.1145/1006142.1006159.

Retrieved 03/31/2021 from (cited on page 21).

[JHM21] Chris Jensen, Heidi Howard, and Richard Mortier. 2021. Examining Raft’s

behaviour during partial network failures. In Proceedings of the 1st Workshop
on High Availability and Observability of Cloud Systems (HAOC ’21). Association

for Computing Machinery, New York, NY, USA, (April 2021), 11–17. doi:

10.1145/3447851.3458739. Retrieved 09/08/2021 from (cited on pages 2, 6).

[Kar+17] Aleksandr Karbyshev, Nikolaj Bjørner, Shachar Itzhaky, Noam Rinetzky, and

Sharon Shoham. 2017. Property-Directed Inference of Universal Invariants or

Proving Their Absence. en. Journal of the ACM, 30 (cited on pages 28, 29, 44).

[Kil+07] Charles Killian, James W Anderson, Ryan Braud, Ranjit Jhala, and Amin

Vahdat. 2007. Mace: Language Support for Building Distributed Systems. en,

10 (cited on page 18).

[Kin13] Kyle Kingsbury. 2013. Jepsen: A framework for distributed systems verification,

with fault injection. (2013). Retrieved 04/10/2019 from https://github.com/

jepsen-io/jepsen (cited on page 16).

[Kin20] Kyle Kingsbury. 2020. Jepsen Analyses. (2020). Retrieved 09/25/2021 from

https://jepsen.io/analyses (cited on page 16).

[Knu74] Donald E. Knuth. 1974. Computer programming as an art. Communications
of the ACM, 17, 12, (December 1974), 667–673. doi: 10.1145/361604.361612.

Retrieved 09/03/2021 from (cited on page 1).

[Koe+20] Jason R. Koenig, Oded Padon, Neil Immerman, and Alex Aiken. 2020. First-

order quantified separators. In Proceedings of the 41st ACM SIGPLAN Conference
on Programming Language Design and Implementation (PLDI 2020). Association

for Computing Machinery, New York, NY, USA, (June 2020), 703–717. doi:

10.1145/3385412.3386018. Retrieved 06/08/2021 from (cited on page 33).

[Koń+11] Jan Kończak, Nuno Filipe de Sousa Santos, Tomasz Żurkowski, Paweł T.

Wojciechowski, and André Schiper. 2011. JPaxos: State machine replication

based on the Paxos protocol. Technical report EPFL-REPORT-167765 (cited on

page 2).

[KKT19] Igor Konnov, Jure Kukovec, and Thanh-Hai Tran. 2019. TLA+ model checking

made symbolic. en. Proceedings of the ACM on Programming Languages, 3,
OOPSLA, (October 2019), 1–30. 00001. doi: 10.1145/3360549. Retrieved

11/29/2019 from (cited on page 20).

https://doi.org/10.1145/1006142.1006159
https://doi.org/10.1145/3447851.3458739
https://github.com/jepsen-io/jepsen
https://github.com/jepsen-io/jepsen
https://jepsen.io/analyses
https://doi.org/10.1145/361604.361612
https://doi.org/10.1145/3385412.3386018
https://doi.org/10.1145/3360549

[Kot+07] Ramakrishna Kotla, Lorenzo Alvisi, Mike Dahlin, Allen Clement, and Edmund

Wong. 2007. Zyzzyva: Speculative byzantine fault tolerance. In In Symposium
on Operating Systems Principles (SOSP (cited on page 2).

[Kot+09] Ramakrishna Kotla, Lorenzo Alvisi, Mike Dahlin, Allen Clement, and Ed-

mund Wong. 2009. Zyzzyva: Speculative Byzantine fault tolerance. en. ACM
Transactions on Computer Systems, 27, 4, 1–39. doi: 10.1145/1658357.1658358.

Retrieved 09/07/2021 from (cited on page 2).

[Kro+20] Morten Krogh-Jespersen, Amin Timany, Marit Edna Ohlenbusch, Simon Odd-

ershede Gregersen, and Lars Birkedal. 2020. Aneris: A Mechanised Logic for

Modular Reasoning about Distributed Systems. en. In Programming Languages
and Systems. Volume 12075. Peter Müller, editor. Series Title: Lecture Notes

in Computer Science. Springer International Publishing, Cham, 336–365. doi:

10.1007/978-3-030-44914-8_13. Retrieved 03/08/2021 from (cited on

pages 23, 36).

[Kur18] Robert P. Kurshan. 2018. Transfer of Model Checking to Industrial Practice.

en. In Handbook of Model Checking. Edmund M. Clarke, Thomas A. Henzinger,

Helmut Veith, and Roderick Bloem, editors. Springer International Publishing,

Cham, 763–793. doi: 10.1007/978-3-319-10575-8_23. Retrieved 09/29/2021

from (cited on page 20).

[Lam98a] Leslie Lamport. 1998. Composition: A Way to Make Proofs Harder. en. In

Compositionality: The Significant Difference. Volume 1536. Gerhard Goos, Juris

Hartmanis, Jan van Leeuwen, Willem-Paul de Roever, Hans Langmaack, and

Amir Pnueli, editors. Springer Berlin Heidelberg, Berlin, Heidelberg, 402–423.

doi: 10.1007/3- 540- 49213- 5_15. Retrieved 12/31/2019 from (cited on

page 23).

[Lam98b] Leslie Lamport. 1998. The part-time parliament. ACM Transactions on Computer
Systems (TOCS), 16, 2, 133–169. 02327. doi: 10.1145/279227.279229 (cited on

page 32).

[Lam05] Leslie Lamport. 2005. Generalized Consensus and Paxos. Technical report

MSR-TR-2005-33. Microsoft Research, (March 2005) (cited on page 2).

[Lam11] Leslie Lamport. 2011. Byzantizing Paxos by Refinement. en. In Distributed
Computing. Volume 6950. David Peleg, editor. Series Title: Lecture Notes in

Computer Science. Springer Berlin Heidelberg, Berlin, Heidelberg, 211–224.

doi: 10.1007/978-3-642-24100-0_22. Retrieved 11/06/2020 from (cited on

page 24).

https://doi.org/10.1145/1658357.1658358
https://doi.org/10.1007/978-3-030-44914-8_13
https://doi.org/10.1007/978-3-319-10575-8_23
https://doi.org/10.1007/3-540-49213-5_15
https://doi.org/10.1145/279227.279229
https://doi.org/10.1007/978-3-642-24100-0_22

[Lam18] Leslie Lamport. 2018. Industrial Use of TLA+. (December 2018). Retrieved

09/29/2021 from http://lamport.azurewebsites.net/tla/industrial-

use.html (cited on pages 12, 20).

[Lee+14] Tanakorn Leesatapornwongsa, Mingzhe Hao, Pallavi Joshi, Jeffrey F Lukman,

and Haryadi S Gunawi. 2014. SAMC: Semantic-Aware Model Checking for

Fast Discovery of Deep Bugs in Cloud Systems. en, 17. 00074 (cited on page 18).

[Lee+16] Tanakorn Leesatapornwongsa, Jeffrey F. Lukman, Shan Lu, and Haryadi

S. Gunawi. 2016. TaxDC: A Taxonomy of Non-Deterministic Concurrency

Bugs in Datacenter Distributed Systems. en. In Proceedings of the Twenty-First
International Conference on Architectural Support for Programming Languages and
Operating Systems. ACM, Atlanta Georgia USA, (March 2016), 517–530. doi:

10.1145/2872362.2872374. Retrieved 09/06/2021 from (cited on page 9).

[Lei10] K. RustanM. Leino. 2010. Dafny: AnAutomatic ProgramVerifier for Functional

Correctness. en. In Logic for Programming, Artificial Intelligence, and Reasoning.
Volume 6355. Edmund M. Clarke and Andrei Voronkov, editors. Springer,

348–370. Retrieved 04/16/2019 from (cited on pages 25, 38).

[LBC16] Mohsen Lesani, Christian J. Bell, and Adam Chlipala. 2016. Chapar: Certified

Causally Consistent Distributed Key-value Stores. In Proceedings of the 43rd An-
nual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages
(POPL ’16). ACM, 357–370. Retrieved 04/10/2019 from (cited on pages 11, 34).

[LS20] Tom Lianza and Chris Snook. 2020. A Byzantine failure in the real world. en.

(November 2020). Retrieved 09/16/2021 from https://blog.cloudflare.

com/a-byzantine-failure-in-the-real-world/ (cited on page 6).

[LBK02] David Liben-Nowell, Hari Balakrishnan, and David Karger. 2002. Analysis

of the evolution of peer-to-peer systems. In In ACM Conf. on Principles of
Distributed Computing (PODC, 233–242 (cited on pages 2, 3).

[LC12] Barbara Liskov and James Cowling. 2012. Viewstamped Replication Revisited.

en. Technical report MIT-CSAIL-TR-2012-021. (July 2012), 16 (cited on page 2).

[Lu+19] Jie Lu, LiuChen, LianLi, andXiaobingFeng. 2019.UnderstandingNodeChange

Bugs for Distributed Systems. en. In 2019 IEEE 26th International Conference on
Software Analysis, Evolution and Reengineering (SANER). IEEE, Hangzhou, China,

(February 2019), 399–410. doi: 10.1109/SANER.2019.8668027. Retrieved

08/31/2021 from (cited on page 8).

http://lamport.azurewebsites.net/tla/industrial-use.html
http://lamport.azurewebsites.net/tla/industrial-use.html
https://doi.org/10.1145/2872362.2872374
https://blog.cloudflare.com/a-byzantine-failure-in-the-real-world/
https://blog.cloudflare.com/a-byzantine-failure-in-the-real-world/
https://doi.org/10.1109/SANER.2019.8668027

[Lu+08] Shan Lu, Soyeon Park, Eunsoo Seo, and Yuanyuan Zhou. 2008. Learning from

mistakes: a comprehensive study on real world concurrency bug characteristics.

In Proceedings of the 13th international conference on Architectural support for
programming languages and operating systems (ASPLOS XIII). Association for

Computing Machinery, New York, NY, USA, (March 2008), 329–339. doi:

10.1145/1346281.1346323. Retrieved 09/19/2021 from (cited on page 9).

[Lu13] Tianxiang Lu. 2013. Formal verification of the Pastry protocol. PhD thesis. Saarland

University (cited on page 5).

[Luk+19] Jeffrey F. Lukman, Tanakorn Leesatapornwongsa, Aarti Gupta, Shan Lu,

Haryadi S. Gunawi, Huan Ke, Cesar A. Stuardo, Riza O. Suminto, Daniar

H. Kurniawan, Dikaimin Simon, Satria Priambada, Chen Tian, and Feng Ye.

2019. FlyMC: Highly Scalable Testing of Complex Interleavings in Distributed

Systems. en. In Proceedings of the Fourteenth EuroSys Conference 2019 CD-ROM on
ZZZ - EuroSys ’19. 00001. ACM Press, Dresden, Germany, 1–16. doi: 10/gf9vng.

Retrieved 10/14/2019 from (cited on page 18).

[Ma+19] Haojun Ma, Aman Goel, Jean-Baptiste Jeannin, Manos Kapritsos, Baris Kasikci,

and Karem A. Sakallah. 2019. I4: incremental inference of inductive in-

variants for verification of distributed protocols. In Proceedings of the 27th
ACM Symposium on Operating Systems Principles (SOSP ’19). Association for

Computing Machinery, New York, NY, USA, (October 2019), 370–384. doi:

10.1145/3341301.3359651. Retrieved 03/08/2021 from (cited on pages 30,

35, 44).

[MN17] Rupak Majumdar and Filip Niksic. 2017. Why is random testing effective for

partition tolerance bugs? en. Proceedings of the ACM on Programming Languages,
2, POPL, (December 2017), 1–24. 00005. doi: 10/gf9vnf. Retrieved 10/14/2019

from (cited on page 17).

[MA05] J.-P. Martin and L. Alvisi. 2005. Fast Byzantine Consensus. In 2005 International
Conference on Dependable Systems and Networks (DSN’05). ISSN: 2158-3927. (June

2005), 402–411. doi: 10.1109/DSN.2005.48 (cited on page 2).

[MA06] Jean-Philippe Martin and Lorenzo Alvisi. 2006. Fast Byzantine Consensus.

English. IEEE Transactions on Dependable and Secure Computing, 3, 3, (September

2006), 202–215.NumPages: 202-215 Place:Washington, United States Publisher:

IEEE Computer Society. doi: http://dx.doi.org.libproxy1.nus.edu.sg/

10.1109/TDSC.2006.35 (cited on page 2).

https://doi.org/10.1145/1346281.1346323
https://doi.org/10/gf9vng
https://doi.org/10.1145/3341301.3359651
https://doi.org/10/gf9vnf
https://doi.org/10.1109/DSN.2005.48
https://doi.org/http://dx.doi.org.libproxy1.nus.edu.sg/10.1109/TDSC.2006.35
https://doi.org/http://dx.doi.org.libproxy1.nus.edu.sg/10.1109/TDSC.2006.35

[McM03] K. L. McMillan. 2003. Interpolation and SAT-Based Model Checking. en. In

Computer Aided Verification. Volume 2725. Gerhard Goos, Juris Hartmanis, Jan

van Leeuwen,WarrenA. Hunt, and Fabio Somenzi, editors. Series Title: Lecture

Notes in Computer Science. Springer Berlin Heidelberg, Berlin, Heidelberg,

1–13. doi: 10.1007/978-3-540-45069-6_1. Retrieved 06/15/2021 from (cited

on page 20).

[McM02] Ken L. McMillan. 2002. Applying SAT Methods in Unbounded Symbolic

Model Checking. en. In Computer Aided Verification. Volume 2404. Gerhard

Goos, Juris Hartmanis, Jan van Leeuwen, Ed Brinksma, and Kim Guldstrand

Larsen, editors. Series Title: LectureNotes in Computer Science. Springer Berlin

Heidelberg, Berlin, Heidelberg, 250–264. doi: 10.1007/3-540-45657-0_19.

Retrieved 06/14/2021 from (cited on page 19).

[MP20] Kenneth L. McMillan and Oded Padon. 2020. Ivy: A Multi-modal Verifi-

cation Tool for Distributed Algorithms. en. In Computer Aided Verification.
Volume 12225. Shuvendu K. Lahiri and Chao Wang, editors. Series Title: Lec-

ture Notes in Computer Science. Springer International Publishing, Cham,

190–202. doi: 10.1007/978-3-030-53291-8_12. Retrieved 03/08/2021 from

(cited on pages 26, 34).

[Mic+17] Ellis Michael, Dan R K Ports, Naveen Kr Sharma, and Adriana Szekeres. 2017.

Recovering Shared Objects Without Stable Storage. en, (August 2017), 27 (cited

on page 2).

[Mil21] Alex Miller. 2021. BUGGIFY - Testing Distributed Systems with Deterministic

Simulation. (2021). Retrieved 09/25/2021 from https://transactional.

blog/simulation/buggify.html (cited on page 17).

[MDC06] Alice Miller, Alastair Donaldson, and Muffy Calder. 2006. Symmetry in

temporal logic model checking. en. ACM Computing Surveys, 38, 3, (September

2006), 8. doi: 10.1145/1132960.1132962. Retrieved 09/25/2021 from (cited

on page 18).

[MC19] Atsuki Momose and Jason Paul Cruz. 2019. Force-Locking Attack on Sync

Hotstuff. Technical report 1484. Retrieved 09/16/2021 from (cited on page 2).

[MAK13] Iulian Moraru, David G. Andersen, and Michael Kaminsky. 2013. There is

more consensus in Egalitarian parliaments. In Proceedings of the Twenty-Fourth
ACM Symposium on Operating Systems Principles (SOSP ’13). Association for

Computing Machinery, New York, NY, USA, (November 2013), 358–372. doi:

10.1145/2517349.2517350 (cited on page 2).

https://doi.org/10.1007/978-3-540-45069-6_1
https://doi.org/10.1007/3-540-45657-0_19
https://doi.org/10.1007/978-3-030-53291-8_12
https://transactional.blog/simulation/buggify.html
https://transactional.blog/simulation/buggify.html
https://doi.org/10.1145/1132960.1132962
https://doi.org/10.1145/2517349.2517350

[Nak15] Heather Nakama. 2015. Inside Azure Search: Chaos Engineering. en. (July

2015). Retrieved 09/24/2021 from https://azure.microsoft.com/en-

us/blog/inside-azure-search-chaos-engineering/ (cited on page 16).

[NAE18] Faisal Nawab, Divyakant Agrawal, and Amr El Abbadi. 2018. DPaxos: Man-

aging Data Closer to Users for Low-Latency and Mobile Applications. In

Proceedings of the 2018 International Conference on Management of Data (SIGMOD

’18). Association for Computing Machinery, New York, NY, USA, (May 2018),

1221–1236. doi: 10.1145/3183713.3196928. Retrieved 09/07/2021 from (cited

on page 2).

[Net11] Netflix Technology Blog. 2011. The Netflix Simian Army. en. (July 2011).

Retrieved 09/24/2021 from https://netflixtechblog.com/the-netflix-

simian-army-16e57fbab116 (cited on page 16).

[NTT21] Joachim Neu, Ertem Nusret Tas, and David Tse. 2021. Ebb-and-Flow Pro-

tocols: A Resolution of the Availability-Finality Dilemma. arXiv:2009.04987
[cs], (February 2021). arXiv: 2009.04987. Retrieved 09/16/2021 from (cited on

page 2).

[New+15] Chris Newcombe, Tim Rath, Fan Zhang, Bogdan Munteanu, Marc Brooker,

andMichael Deardeuff. 2015. HowAmazon web services uses formal methods.

en. Communications of the ACM, 58, 4, (March 2015), 66–73 (cited on pages 1, 4,

5, 12, 16, 19–21, 36).

[OHe18] Peter W. O’Hearn. 2018. Continuous Reasoning: Scaling the impact of formal

methods. en. In Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic
in Computer Science. ACM, Oxford United Kingdom, (July 2018), 13–25. doi:

10.1145/3209108.3209109. Retrieved 10/08/2021 from (cited on page 13).

[ORY01] Peter O’Hearn, John Reynolds, and Hongseok Yang. 2001. Local Reasoning

about Programs that Alter Data Structures. en. In Computer Science Logic.
Volume 2142. Gerhard Goos, Juris Hartmanis, Jan van Leeuwen, and Laurent

Fribourg, editors. 00000. Springer Berlin Heidelberg, Berlin, Heidelberg, 1–

19. doi: 10.1007/3-540-44802-0_1. Retrieved 06/02/2019 from (cited on

page 23).

[OHe07] Peter W. O’Hearn. 2007. Resources, concurrency, and local reasoning. en.

Theoretical Computer Science, 375, 1-3, (May 2007), 271–307. 00532. doi: 10/

crkgwk. Retrieved 06/02/2019 from (cited on page 23).

[Ong14] Diego Ongaro. 2014. Consensus: Bridging Theory and Practice. PhD thesis. Stan-

ford University, (August 2014) (cited on pages 2, 6).

https://azure.microsoft.com/en-us/blog/inside-azure-search-chaos-engineering/
https://azure.microsoft.com/en-us/blog/inside-azure-search-chaos-engineering/
https://doi.org/10.1145/3183713.3196928
https://netflixtechblog.com/the-netflix-simian-army-16e57fbab116
https://netflixtechblog.com/the-netflix-simian-army-16e57fbab116
https://doi.org/10.1145/3209108.3209109
https://doi.org/10.1007/3-540-44802-0_1
https://doi.org/10/crkgwk
https://doi.org/10/crkgwk

[Ong15] Diego Ongaro. 2015. Bug in single-server membership changes. (July 2015).

Retrieved 09/01/2021 from https://groups.google.com/g/raft-dev/c/

t4xj6dJTP6E/m/d2D9LrWRza8J (cited on pages 2, 6).

[OO14] Diego Ongaro and John K. Ousterhout. 2014. In search of an understandable

consensus algorithm. In USENIX Annual Technical Conference. 00416, 305–319
(cited on pages 2, 5, 32).

[Pad+16a] Oded Padon, Neil Immerman, Sharon Shoham, Aleksandr Karbyshev, and

Mooly Sagiv. 2016. Decidability of inferring inductive invariants. ACM SIG-
PLAN Notices, 51, 1, (January 2016), 217–231. doi: 10.1145/2914770.2837640.

Retrieved 06/08/2021 from (cited on page 29).

[Pad+17] Oded Padon, Giuliano Losa, Mooly Sagiv, and Sharon Shoham. 2017. Paxos

made EPR: decidable reasoning about distributed protocols. en. In Proceedings
of the ACM on Programming Languages. Volume 1. 00023. (October 2017), 1–31.

doi: 10/gfzhts. Retrieved 04/16/2019 from (cited on pages 26, 35, 48).

[Pad+16b] Oded Padon, Kenneth L. McMillan, Aurojit Panda, Mooly Sagiv, and Sharon

Shoham. 2016. Ivy: safety verification by interactive generalization. In Proceed-
ings of the 37th ACM SIGPLAN Conference on Programming Language Design and
Implementation - PLDI 2016. ACM Press, 614–630. Retrieved 04/16/2019 from

(cited on pages 14, 25, 26, 29, 39).

[Pîr19] George Pîrlea. 2019. Toychain: Formally-Verified Blockchain Consensus. PhD thesis.

University College London, (April 2019). Retrieved 05/06/2019 from (cited on

page 37). 00000.

[PKS21] George Pîrlea, Amrit Kumar, and Ilya Sergey. 2021. Practical smart contract

shardingwith ownership and commutativity analysis. In Proceedings of the 42nd
ACM SIGPLAN International Conference on Programming Language Design and
Implementation (PLDI 2021). Association for Computing Machinery, New York,

NY, USA, (June 2021), 1327–1341. doi: 10.1145/3453483.3454112. Retrieved

07/29/2021 from (cited on page 38).

[PS18] George Pîrlea and Ilya Sergey. 2018. Mechanising Blockchain Consensus. In

Proceedings of 7th ACM SIGPLAN International Conference on Certified Programs
and Proofs. doi: 10.1145/3167086 (cited on page 37).

[PdMB10] Ruzica Piskac, Leonardo de Moura, and Nikolaj Bjørner. 2010. Deciding

Effectively Propositional Logic Using DPLL and Substitution Sets. en. Journal
of Automated Reasoning, 44, 4, (April 2010), 401–424. doi: 10.1007/s10817-009-

9161-6. Retrieved 06/07/2021 from (cited on page 26).

https://groups.google.com/g/raft-dev/c/t4xj6dJTP6E/m/d2D9LrWRza8J
https://groups.google.com/g/raft-dev/c/t4xj6dJTP6E/m/d2D9LrWRza8J
https://doi.org/10.1145/2914770.2837640
https://doi.org/10/gfzhts
https://doi.org/10.1145/3453483.3454112
https://doi.org/10.1145/3167086
https://doi.org/10.1007/s10817-009-9161-6
https://doi.org/10.1007/s10817-009-9161-6

[PS99] Carl Pixley and Vigyan Singhal. 1999. Model checking: a hardware design per-

spective. en. International Journal on Software Tools for Technology Transfer (STTT),
2, 3, (November 1999), 288–306. doi: 10.1007/s100090050036. Retrieved

09/29/2021 from (cited on page 20).

[Rei+20] Alastair Reid, Luke Church, Shaked Flur, Sarah de Haas, Maritza Johnson, and

Ben Laurie. 2020. Towards making formal methods normal: meeting devel-

opers where they are. arXiv:2010.16345 [cs], (October 2020). arXiv: 2010.16345.

Retrieved 11/02/2020 from (cited on pages 1, 12, 35).

[Rei16] Emily Reinhold. 2016. Rewriting Uber Engineering: The Opportunities Mi-

croservices Provide. en-US. (April 2016). Retrieved 09/27/2021 from https://

eng.uber.com/building-tincup-microservice-implementation/ (cited

on page 16).

[Rob+12] Jesse Robins, Kripa Krishnan, John Allspaw, and Tom Limoncelli. 2012. Re-

silience Engineering: Learning to Embrace Failure. ACM Queue, 10, 9, (Septem-

ber 2012). Retrieved 09/24/2021 from (cited on page 16).

[RD01] Antony Rowstron and Peter Druschel. 2001. Pastry: Scalable, Decentralized

Object Location, and Routing for Large-Scale Peer-to-Peer Systems. en. In

Middleware 2001 (Lecture Notes in Computer Science). Rachid Guerraoui,

editor. Springer, Berlin, Heidelberg, 329–350. doi: 10.1007/3-540-45518-

3_18 (cited on pages 2, 4).

[SZT21] William Schultz, Siyuan Zhou, and Stavros Tripakis. 2021. Design and Veri-

fication of a Logless Dynamic Reconfiguration Protocol in MongoDB Repli-

cation. en. arXiv:2102.11960 [cs], (February 2021). arXiv: 2102.11960. Retrieved

03/26/2021 from (cited on pages 12, 20).

[SWT18] Ilya Sergey, JamesR.Wilcox, andZacharyTatlock. 2018. ProgrammingandProv-

ing with Distributed Protocols. Proceedings of the 44th Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, (January 2018).

Retrieved 02/03/2018 from (cited on pages 23, 36, 37).

[She16] Arjun Shenoy. 2016. A Deep Dive into Simoorg, our Open Source Failure

Induction Framework. en. (March 2016). Retrieved 09/27/2021 from https:

//engineering.linkedin.com/blog/2016/03/deep-dive-Simoorg-open-

source-failure-induction-framework (cited on page 16).

[SKD19] Nibesh Shrestha, Mohan Kumar, and SiSi Duan. 2019. Revisiting hBFT: Spec-

ulative Byzantine Fault Tolerance with Minimum Cost. arXiv:1902.08505 [cs],
(April 2019). arXiv: 1902.08505. Retrieved 09/16/2021 from (cited on page 2).

https://doi.org/10.1007/s100090050036
https://eng.uber.com/building-tincup-microservice-implementation/
https://eng.uber.com/building-tincup-microservice-implementation/
https://doi.org/10.1007/3-540-45518-3_18
https://doi.org/10.1007/3-540-45518-3_18
https://engineering.linkedin.com/blog/2016/03/deep-dive-Simoorg-open-source-failure-induction-framework
https://engineering.linkedin.com/blog/2016/03/deep-dive-Simoorg-open-source-failure-induction-framework
https://engineering.linkedin.com/blog/2016/03/deep-dive-Simoorg-open-source-failure-induction-framework

[Sig+16] Helgi Sigurbjarnarson, James Bornholt, Emina Torlak, and Xi Wang. 2016.

Push-Button Verification of File Systems via Crash Refinement. en, 16 (cited on

page 8).

[SBG10] Jiri Simsa, Randy Bryant, and Garth Gibson. 2010. dBug: Systematic Evaluation

of Distributed Systems. en, 9 (cited on page 18).

[Spr+20] Christoph Sprenger, Tobias Klenze, Marco Eilers, Felix A. Wolf, Peter Müller,

MartinClochard, andDavidBasin. 2020. Igloo: Soundly LinkingCompositional

Refinement and Separation Logic for Distributed System Verification. en.

arXiv:2010.04749 [cs], (October 2020). arXiv: 2010.04749. doi: 10.1145/3428220.

Retrieved 10/20/2020 from (cited on pages 23, 36).

[Sto+01] Ion Stoica, Robert Morris, David Karger, M Frans Kaashoek, and Hari Bal-

akrishnan. 2001. Chord: A Scalable Peer-to-peer Lookup Service for Internet

Applications. en, (August 2001), 12 (cited on pages 2, 3).

[Sut20] Pierre Sutra. 2020. On the correctness of Egalitarian Paxos. en. Information
Processing Letters, 156, (April 2020), 105901. doi: 10.1016/j.ipl.2019.105901

(cited on page 2).

[SS10] Pierre Sutra and Marc Shapiro. 2010. Fast Genuine Generalized Consensus.

en. Technical report. (corrected August 2010). Section 6.3. (February 2010), 62

(cited on page 2).

[Swa+16] Nikhil Swamy, Cătălin Hriţcu, Chantal Keller, Aseem Rastogi, Antoine

Delignat-Lavaud, Simon Forest, Karthikeyan Bhargavan, Cédric Fournet,

Pierre-Yves Strub, Markulf Kohlweiss, Jean-Karim Zinzindohoue, and Santiago

Zanella-Béguelin. 2016. Dependent types and multi-monadic effects in F*.

en. In Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages. ACM, St. Petersburg FL USA, (January

2016), 256–270. doi: 10.1145/2837614.2837655. Retrieved 10/09/2021 from

(cited on page 38).

[Tau+18] Marcelo Taube, Giuliano Losa, Kenneth L. McMillan, Oded Padon, Mooly

Sagiv, Sharon Shoham, James R. Wilcox, and Doug Woos. 2018. Modularity

for decidability of deductive verification with applications to distributed

systems. en. In Proceedings of the 39th ACM SIGPLAN Conference on Programming
Language Design and Implementation. ACM, Philadelphia PA USA, (June 2018),

662–677. doi: 10.1145/3192366.3192414. Retrieved 06/03/2021 from (cited

on page 36).

https://doi.org/10.1145/3428220
https://doi.org/10.1016/j.ipl.2019.105901
https://doi.org/10.1145/2837614.2837655
https://doi.org/10.1145/3192366.3192414

[TF09] Jeff Terrace and Michael J. Freedman. 2009. Object Storage on {CRAQ}: High-

Throughput Chain Replication for Read-Mostly Workloads. en. In Retrieved

09/09/2021 from (cited on page 2).

[Wat+21] Yasunari Watanabe, Kiran Gopinathan, George Pîrlea, Nadia Polikarpova, and

Ilya Sergey. 2021. Certifying the synthesis of heap-manipulating programs.

Proceedings of the ACM on Programming Languages, 5, ICFP, (August 2021), 84:1–
84:29. doi: 10.1145/3473589. Retrieved 08/23/2021 from (cited on pages 37,

38).

[Whi20] Michael Whittaker. CRAQ Bug. original-date: 2020-06-13T18:44:33Z, (June

2020). Retrieved 09/09/2021 from (cited on page 2).

[Whi21] Michael Whittaker. 2021. EPaxos Dependency Set Compaction Bug. original-

date: 2018-11-03T04:31:20Z. (September 2021). Retrieved 09/16/2021 from

https : / / github . com / mwhittaker / bipartisan _ paxos / blob / master /

epaxos_bugs/epaxos_dependency_bug.pdf (cited on page 2).

[Whi+21] Michael Whittaker, Joseph M Hellerstein, Neil Giridharan, Adriana Szekeres,

Heidi Howard, and Faisal Nawab. 2021. Matchmaker Paxos: A Reconfigurable

Consensus Protocol. en. Journal of Systems Research, 22 (cited on page 2).

[Wil+15] James R. Wilcox, Doug Woos, Pavel Panchekha, Zachary Tatlock, Xi Wang,

Michael D. Ernst, and Thomas Anderson. 2015. Verdi: A Framework for

Implementing and Formally Verifying Distributed Systems. In Proceedings
of the 36th ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI ’15). ACM, 357–368. Retrieved 04/09/2019 from (cited

on pages 11, 12, 22, 34, 37).

[Woo+16] Doug Woos, James R. Wilcox, Steve Anton, Zachary Tatlock, Michael D. Ernst,

and Thomas Anderson. 2016. Planning for change in a formal verification of the

Raft consensus protocol. In Proceedings of the 5th ACM SIGPLAN Conference on
Certified Programs and Proofs (CPP 2016). Association for ComputingMachinery,

New York, NY, USA, (January 2016), 154–165. doi: 10.1145/2854065.2854081.

Retrieved 03/07/2021 from (cited on pages 12, 22).

[Yan+09] Junfeng Yang, Tisheng Chen, Ming Wu, Zhilei Xu, Xuezheng Liu, Haoxiang

Lin, Mao Yang, Fan Long, Lintao Zhang, and Lidong Zhou. 2009. MODIST:

Transparent Model Checking of Unmodified Distributed Systems. en, 16. 00216

(cited on page 18).

[Yan+11] Xuejun Yang, Yang Chen, Eric Eide, and John Regehr. 2011. Finding and

understanding bugs in C compilers. en, 12. 00559 (cited on page 11).

https://doi.org/10.1145/3473589
https://github.com/mwhittaker/bipartisan_paxos/blob/master/epaxos_bugs/epaxos_dependency_bug.pdf
https://github.com/mwhittaker/bipartisan_paxos/blob/master/epaxos_bugs/epaxos_dependency_bug.pdf
https://doi.org/10.1145/2854065.2854081

[Yao+21] Jianan Yao, Runzhou Tao, Ronghui Gu, Jason Nieh, Suman Jana, and Gabriel

Ryan. 2021. DistAI: Data-Driven Automated Invariant Learning for Distributed

Protocols. en. In 17 (cited on pages 30, 32, 35).

[Yin+19] Maofan Yin, Dahlia Malkhi, Michael K. Reiter, Guy Golan Gueta, and Ittai

Abraham. 2019. HotStuff: BFT Consensus with Linearity and Responsiveness.

en. In Proceedings of the 2019 ACM Symposium on Principles of Distributed
Computing. ACM, Toronto ON Canada, (July 2019), 347–356. doi: 10.1145/

3293611.3331591. Retrieved 10/30/2020 from (cited on page 36).

[YML99] Yuan Yu, Panagiotis Manolios, and Leslie Lamport. 1999. Model Checking

TLA+ Specifications. en. In Correct Hardware Design and Verification Methods.
Volume 1703. Gerhard Goos, Juris Hartmanis, Jan van Leeuwen, Laurence

Pierre, and Thomas Kropf, editors. Series Title: Lecture Notes in Computer

Science. Springer Berlin Heidelberg, Berlin, Heidelberg, 54–66. doi: 10.1007/3-

540-48153-2_6. Retrieved 03/08/2021 from (cited on page 19).

[Yua+14] Ding Yuan, Yu Luo, Xin Zhuang, Guilherme Renna Rodrigues, Xu Zhao, Yongle

Zhang, Pranay U. Jain, and Michael Stumm. 2014. Simple Testing Can Prevent

Most Critical Failures: An Analysis of Production Failures in Distributed

Data-Intensive Systems. en. In 249–265. Retrieved 09/17/2021 from (cited on

pages 7, 8).

[Zav12] Pamela Zave. 2012. Using lightweight modeling to understand chord. en. ACM
SIGCOMM Computer Communication Review, 42, 2, (March 2012), 49–57. doi:

10.1145/2185376.2185383. Retrieved 09/06/2021 from (cited on pages 2, 3).

[Zav17] Pamela Zave. 2017. Reasoning About Identifier Spaces: How to Make Chord

Correct. IEEE Transactions on Software Engineering, 43, 12, (December 2017),

1144–1156. Conference Name: IEEE Transactions on Software Engineering. doi:

10.1109/TSE.2017.2655056 (cited on pages 2–4).

[Zho+21] Jingyu Zhou, Meng Xu, Alexander Shraer, Bala Namasivayam, Alex Miller,

Evan Tschannen, Steve Atherton, Andrew J. Beamon, Rusty Sears, John Leach,

Dave Rosenthal, Xin Dong, Will Wilson, Ben Collins, David Scherer, Alec

Grieser, Young Liu, Alvin Moore, Bhaskar Muppana, Xiaoge Su, and Vishesh

Yadav. 2021. FoundationDB: A Distributed Unbundled Transactional Key

Value Store. en. In Proceedings of the 2021 International Conference on Management
of Data. ACM, Virtual Event China, (June 2021), 2653–2666. doi: 10.1145/

3448016.3457559. Retrieved 09/27/2021 from (cited on page 16).

https://doi.org/10.1145/3293611.3331591
https://doi.org/10.1145/3293611.3331591
https://doi.org/10.1007/3-540-48153-2_6
https://doi.org/10.1007/3-540-48153-2_6
https://doi.org/10.1145/2185376.2185383
https://doi.org/10.1109/TSE.2017.2655056
https://doi.org/10.1145/3448016.3457559
https://doi.org/10.1145/3448016.3457559

	Contents
	Introduction
	Distributed Systems Are Buggy
	Protocols Are Incorrect
	Implementations Are Buggy

	Formal Methods Can Help
	Current Challenges
	Practical Methods
	Contributions

	State of the Art
	Testing and Model Checking
	Fault-Injection and Random Testing
	Checking Temporal Logic Specifications
	Connecting Models to Implementations

	Interactive Verification
	Refinement Using Verified System Transformers
	Compositional Reasoning With Separation Logic
	Linking Refinement and Separation Logic

	Semi-Automated Verification
	Deductive Verification of TLA Specifications
	Safety and Liveness Proofs for Implementations
	Finding Invariants by Interactive Generalisation

	Automated Verification
	Property-Directed Reachability
	Incremental Inference of Universal Invariants
	Data-Driven Invariant Learning
	Invariants with Quantifier Alternations

	Gaps in the State of the Art

	Preliminary Work
	Towards Automated Reasoning
	Guided Invariant Discovery
	Challenges of EPR Encoding

	Conclusion
	Bibliography

