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Abstract. We present Veil, an open-source framework for automated
and interactive verification of transition systems, aimed specifically at
conducting machine-assisted proofs about concurrent and distributed al-
gorithms. Veil is implemented on top of the Lean proof assistant. It allows
one to describe a transition system and its specification in a simple im-
perative language, producing verification conditions in first-order logic,
to be discharged automatically via a range of SMT solvers. In case auto-
mated verification fails or if the system’s description requires statements
in a higher-order logic, Veil provides an interactive verification mode, by
virtue of being embedded in a general-purpose proof assistant. We have
evaluated Veil on a large set of case studies from the distributed system
verification literature, showing that its automated verification perfor-
mance is acceptable for practical verification tasks, while it also allows
for seamless automated/interactive verification of system specifications
beyond the reach of existing automated provers.

1 Introduction

Over the years, the research community has developed a spectrum of tools for
formal reasoning about transition systems, ranging from interactive verification
frameworks to fully automated tools. For distributed protocols in particular,
formal verification has traditionally been carried out in interactive proof assis-
tants [15,18,25,41,43,44,46–48,54,60], as the expressivity of their logics allows
specifying and proving arbitrary properties, and their foundational nature [4], in
which proofs are given only in terms of well-accepted axioms and are machine-
checked, provides a high degree of assurance. The downside of interactive proofs,
however, is that large systems take months-to-years of effort to verify [55].

At the other end of the spectrum, tools such as Ivy [38], UPVerifier [31], and
mypyvy [53] use decidable fragments of first-order logic and advanced automated
theorem provers [5,33] to automatically verify properties of distributed protocols
and thus reduce the manual proof effort to zero. Such tools, however, are not
foundational and are limited in terms of the properties that can be naturally
encoded, often requiring contorted specifications designed by experts in decidable
reasoning to keep verification automated [37]. Whilst this has been shown to be
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a viable approach for many real-world distributed protocols, certain properties
of interest are simply not expressible in a decidable logic. To work around this
limitation, some tools of this nature provide an escape-hatch to allow the user
to interactively prove difficult properties [23, 30, 50]. These escape-hatches tend
to be much less usable than interactive proof assistants, however, often lacking
visibility into the goals that need to be proven or advanced tactic support.

In this paper we present Veil, a verification framework embedded in the Lean 4
proof assistant [32] that delivers the best of both worlds—providing both push-
button verification for decidable fragments of first-order logic and the full power
of a modern higher-order proof assistant for when automation falls short.

Importantly, Veil is foundational : its verification condition (VC) generator is
proven sound with respect to the semantics of its specification language. It is also
lightweight : Veil is implemented as a library using Lean metaprogramming [40],
its specification language and VC generation can be easily extended to sup-
port new constructs, along with their soundness proofs. Finally, Veil allows for
seamless interaction between automated and human-assisted proofs, all done in
Lean, allowing one to establish system specifications that are not expressible in
first-order logic, and, thus, are beyond the reach of existing automated tools.

2 A Tour of Veil

This section gives an tour of Veil’s features and its advantages over existing tools.

2.1 Case Study: Suzuki-Kasami Algorithm

As a running example, we consider an implementation of the Suzuki-Kazami pro-
tocol for ensuring mutual exclusion [49, 58]. An implementation of the protocol
in Veil is shown in Fig. 1. Some boilerplate has been removed for brevity.

A Veil specification consists of three parts: a state definition and initialisation
(lines 1–34), action definitions (lines 36–83) and invariants (lines 84–98).

State.The state is comprised of uninterpreted sorts, as well as constant, relation
and function symbols. As Veil is embedded in Lean, it supports most Lean types,
including structures and numbers. Veil supports both mutable and immutable
constants, relations and functions. Mutable fields represent the state of the al-
gorithm, while immutable fields cannot be modified and represent symbols from
a background theory. To encode persistent facts about immutable values, Veil
supports a notion of assumptions, whch behave like axioms in Ivy and can be
used to define a background theory for the immutable symbols. In Fig. 1, all
values are implicitly mutable except for init_node (line 21).

The state is initialised before every execution using the after_init block (lines
24–34). In Veil assignment statements, variables starting with a capital letter are
implicitly ∀-quantified, i.e., n_RN N M := 0 means “set n_RN N M to 0 for all N, M”.

Actions.Actions in Veil define the possible transitions between states of the pro-
tocol. They may take parameters and may have a return value. They can make
assumptions using require statements (e.g., line 58), which behave as precondi-
tions for invoking the action. Actions can comprise of any Lean code, including
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1 type node
2

3

4 −−− Requests
5 relation reqs : node → node → Nat → Prop
6

7 −−− Tokens
8 relation t_for : Nat → node → Prop
9 relation t_q : Nat → node → Prop

10 function t_LN : Nat → node → Nat
11

12 −−− Critical section
13 relation crit : node → Prop
14

15 −−− Nodes
16 relation n_privilege : node → Prop
17 relation n_req : node → Prop
18 function n_RN : node → node → Nat
19 −− seq num of the most recently granted req
20 function n_seq : node → Nat
21 immutable individual init_node : node
22

23

24 after_init {
25 n_privilege N := N = init_node
26 n_req N := False
27 n_RN N M := 0
28 n_seq N := if N = init_node then 1 else 0
29 reqs N M I := False
30 t_for I N := I = 1 ∧ N = init_node
31 t_LN I N := 0
32 t_q I N := False
33 crit N := False
34 }
35

36 action exit (n : node) = {
37 require crit n;
38 crit n := False;
39 n_req n := False;
40 let token : Nat := n_seq n
41 t_LN token n := n_RN n n;
42 t_q token N := n_RN n N = t_LN token N + 1;
43 if m : (t_q token m) then
44 t_q token m := False;
45 n_privilege n := False;
46 let k : Nat := token + 1
47 t_for k m := True;
48 t_LN k N := t_LN token N;
49 t_q k N := t_q token N
50 }

51 action enter (n : node) = {
52 require n_privilege n
53 require n_req n
54 −− enter critical section
55 crit n := True
56 }
57 action rcv_privilege (n: node) (t: Nat) = {
58 require t_for t n;
59 require (n_seq n) < t;
60 n_privilege n := True;
61 n_seq n := t
62 }
63 action request (n : node) = {
64 require ¬ n_req n;
65 n_req n := True;
66 if (¬ n_privilege n) then
67 let k := (n_RN n n) + 1
68 n_RN n n := k;
69 reqs N n (n_RN n n) := N ̸= n
70 }
71 −− node `m` requesting from `n` with seq. number `r`
72 action rcv_request (n : node) (m : node) (r : Nat) = {
73 require reqs n m r;
74 let token : Nat := (n_seq n)
75 n_RN n m := if r ≤ (n_RN n m) then n_RN n m else r;
76 if (n_privilege n ∧ ¬ n_req n ∧
77 (t_LN token m) + 1 = (n_RN n m)) then
78 n_privilege n := False;
79 let k : Nat := token + 1
80 t_for k m := True;
81 t_LN k N := t_LN token N;
82 t_q k N := t_q token N
83 }
84 safety [mutex] (crit N ∧ crit M) → N = M
85 invariant [not_request_self] (reqs N M I) → N ̸= M
86 invariant (n_privilege N ∧ n_privilege M)
87 → N = M
88 invariant (crit N) → (n_privilege N ∧ n_req N)
89 invariant ((t_for I N) ∧ (t_for I M)) → N = M
90 invariant ((n_seq N) ̸= 0) → t_for (n_seq N) N
91 invariant ((n_privilege N) ∧ N ̸= M)
92 → (n_seq M) < (n_seq N)
93 invariant ((n_privilege N) ∧ (t_for I M))
94 → I ≤ (n_seq N)
95 invariant ((t_for I N) ∧ ((J + 1) = I) ∧ (t_for J M))
96 → N ̸= M
97 invariant ((t_for I N) ∧ (t_for J M) ∧ I < J)
98 → I ≤ (n_seq N)
99

100 #check_invariants

Fig. 1: An implementation of the Suzuki-Kazami locking protocol in Veil.

constant (let) and variable (let mut) definitions and calling other actions. Ac-
tions can use demonically non-deterministic values using the * symbol.

Invariants and Safety. Invariants are defined using the invariant keyword, and
may optionally be given a custom name (e.g., line 85), which will be used in
generated theorems and Veil output. It is also possible to explicitly document
an invariant as a safety property using the safety keyword which has the same
semantics as invariant (e.g., line 84). In invariants (and safety properties), vari-
ables starting with a capital letter are also implicitly universally quantified at
the beginning of the formula, i.e., the invariant (crit N ∧ crit M) → N = M will
be interpreted as the Lean proposition ∀N M, (crit N ∧ crit M) → N = M .
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2.2 Bounded Model Checking

Once a protocol specification is defined, one might wish to verify that it is not
vacuous, i.e., that it produces non-empty execution traces.

1 sat trace {
2 request
3 enter
4 exit
5 request
6 enter
7 exit
8 } by bmc_sat
9

10 unsat trace {
11 enter
12 enter
13 any 2 actions
14 } by bmc

Fig. 2: BMC in Veil

This is done with the sat trace command with a series
of action calls, as seen in lines 1–8 in Fig. 2. This generates
a Lean goal that asserts that there are parameter values
and nondeterministic choices such that this trace could be
a viable trace of the specification. The generated goal can
be resolved interactively with standard Lean tactics, or au-
tomatically using Veil’s bmc_sat tactic which searches for
executions via SMT-based symbolic bounded model check-
ing (BMC) [6, 17, 53]. If a satisfying trace is found, it is
displayed to the user. One can also verify that specifica-
tions do not admit certain executions. This is done using
the unsat trace command, as seen in lines 10–14 of Fig. 2. This, too, produces
a goal that can be discharged either interactively or automatically using Veil’s
bmc tactic, which tries to prove that no such executions exist by invoking an
SMT solver. unsat trace commands may involve any action or any N actions

statements (cf. line 13) that will nondeterministically choose actions for a trace.

2.3 Automated Safety Proof

After specifying the protocol, the user can use the #check_invariants command
(line 100 of Fig. 1) to try to automatically verify the protocol using SMT. Veil
can use either Lean-auto [1] or Lean-SMT [3] to translate the Lean goal to SMT,
and can use either cvc5 or Z3 to solve the goal automatically. The full details on
Veil’s SMT encoding can be found in Sec. 3.1. By default, if Veil cannot succeed
with solving the goal automatically using one solver, it will try the other solver.
After issuing the command, the user is met with the output shown below, where
a result of either success, failure or unknown is reported for the initialisation of
each invariant and for the preservation of each invariant under each action.

Initialization must establish the invariant: The following set of actions must preserve the invariant:

mutex . . . request exit

not_request_self . . . mutex . . . mutex . . .

inv_2 . . . not_request_self . . . not_request_self . . .

inv_3 . . . inv_2 . . . inv_2 . . .

inv_4 . . . inv_3 . . . inv_3 . . .

inv_5 . . . inv_4 . . . . . . inv_4 . . .

inv_6 . . . inv_5 . . . inv_5 . . .

inv_7 . . . inv_6 . . . inv_6 . . .

inv_8 . . . inv_7 . . . inv_7 . . .

inv_9 . . . inv_8 . . . inv_8 . . .

inv_9 . . . inv_9 . . .

With its default settings of a timeout of 5 seconds per SMT query and cvc5 as
the solver, Veil can automatically verify that the invariant clauses are inductive
in the specification in Fig. 1 and thus that the safety property holds.

2.4 Interactive Proof Mode

Sometimes, fully automated verification is not possible as SMT solvers time
out and return unknown on the query. This can happen frequently when queries
fall outside the decidable fragment. In these cases, because Veil is embedded
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in Lean, users can leverage Lean’s theorem proving capabilities to interactively
discharge these goals. In order to verify an invariant interactively, the user can
ask Veil to generate the corresponding theorem statement. When one emits the
#check_invariants? command, the IDE will automatically suggest to create a
template (with proof to be filled in interactively) for every theorem needed to
verify the safety of the system. Veil also supports #check_invariants!, which only
suggests templates for the theorems that could not be proven automatically.

1 theorem enter_mutex : ∀ (st st' : State),
2 assumptions st → inv st → enter st st'
3 → mutex st' := by
4 intros st st' _ inv
5 simp [enter, invSimp] at *
6 rcases inv with ⟨allowed_crit, one_priv, _⟩
7 rintro n priv req ⟨⟩ N M critN critM
8 simp at *
9 apply one_priv

10 . by_cases h : (N = n)
11 <;> simp [allowed_crit, h, priv, critN]
12 . by_cases h : (M = n)
13 <;> simp [allowed_crit, h, priv, critM]

Fig. 3: Interactive proof that mutex is
preserved by the enter action.

An example statement generated
by #check_invariants? is shown in
lines 1–3 of Fig. 3. The theorem ex-
presses that given that the assump-
tions and invariants hold on a state
st, all subsequent states st' reachable
from st by taking the enter transition
satisfy the invariant mutex, i.e., mutex
is preserved under enter. This state-
ment relies on a relational semantics,
which we discuss in Sec. 3.1. To dis-
charge this goal, the user can use any
native Lean tactics, as well as Veil-specific tactics (not shown in the example).

In Fig. 3, the user uses the Lean intros tactic to bring the states and the
invariant into the Lean context, and then simplifies the action definition (enter)
and unfolds the invariant definition (using the invSimp lemma set introduced
by Veil). The proof only uses two invariant clauses, allowed_crit and one_priv,
which are extracted from the invariant conjunction via the rcases tactic. The
proof is concluded using the by_cases tactic to case-split on whether the con-
sidered node is n, the argument to enter, with the subgoals discharged by using
implications from the action definition (critN, critM, priv), an invariant clause
(allowed_crit) and the case assumption (h).

Veil also supports semi-automatic verification: sometimes, for a query that
falls outside of the decidable fragment and cannot be decided automatically,
it is possible to decide essentially the same query automatically after changing
its structure slightly using tactics. Therefore, Veil introduces the solve_clause

tactic, which automatically tries to discharge the current goal using SMT in the
same manner as #check_invariants. Running solve_clause can result in three
possible outputs: (i) either the verification succeeded and the goal is admitted;3

or (ii) the goal is found to be false and a minimised model is presented as a
counterexample (cf. Sec. 3.4); or (iii) the query returns unknown and no verdict
can be reached. This lends itself to a style of solver-guided interactive verification,
in which users write interactive proofs and occasionally invoke solve_clause to
see if the goal can be discharged automatically, if they’re on a wrong path and
the goal is false, or if they have to keep going (solver returned unknown).

3 Currently, proof reconstruction (provided by Lean-SMT) is off by default in Veil.
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3 Implementing Veil in Lean

Veil is implemented in Lean 4 [32], a dependently-typed programming language
and theorem prover, which offers monad comprehensions with local mutation [51].

3.1 Language Embedding

At the core of Veil lies a domain-specific language (DSL) for writing and specify-
ing transition systems. The DSL is inspired by Alloy [16], Ivy [38], andmypyvy [53];
it adopts standard first-order logic approach for specifying properties (e.g., as-
sumptions and safety), while the transitions (actions) are encoded as Lean’s
native monadic computations, embracing the full power of its do-notation [51].

Protocol states σ in Veil are represented by Lean structures with fields cor-
responding to the relation, function, and individual declarations in the spec-
ification. The type of the protocol’s transitions is, thus, dependent on the type
of its states. For a fixed type σ, each transition is encoded as an instance of a
two-state relation of the form BigStep σ ρ ≜ σ → ρ → σ → Prop, which relates
an input state with the possible outcome result of type ρ and an output state.

A näıve approach to reuse Lean’s do-notation for Veil actions would be to
simply provide a monad instance for BigStep σ ρ, defining the correspond-
ing bind and pure operations. Unfortunately, a canonical definition of bind for
BigStep σ ρ as the composition of transition relations is not well-suited for
SMT-based proofs. For a relation tr1 : BigStep σ ρ and a continuation tr2 : ρ →
BigStep σ ρ′, the composition is λs r′ s′, ∃(t : σ)(r : ρ′), tr1 s r t ∧ tr2 r t r′ s′.

That is, an input state s is related to an output state s′ and the return value r′

if there exist an intermediate state t and a result r that serve as an output of tr1
and an input to tr2. This encoding introduces higher-order quantification over
the elements of the structure σ (i.e., the relations describing the protocol state)
in the respective VCs, which makes it impossible to dischage them via SMT
solvers. Although Veil implements heuristics for quantifier elimination, running
them for each bind operation severely impacts its peformance.

To avoid the higher-order quantification introduced by such a definition of
bind, Veil features an alternative encoding of transitions. We first define each
atomic Veil command as an instance of type WPσ ρ ≜ (ρ → σ → Prop) →
(σ → Prop). This type is a weakest-precondition predicate transformer [10] that
takes an assertion over a transition result ρ and state σ and returns the weakest
pre-condition on the pre-state σ which must be satisfied in order to guarantee
that the assertion holds in all post-states. The bind operation for WPσ ρ can
then be expressed simply via nesting: given tr1 : WPσ ρ and tr2 : ρ → WPσ ρ′,
their composition is defined as λpost , tr1 (λr′, tr2 r′ post). Following this ap-
proach, the enter action from Fig. 1 is first expanded into enter.wp (lines 1–6 of
Fig. 4), where get and modify operations are standard monadic operations for
state reading and writing, and WP.req is a monadic operation for the require

statement (lines 7–8 of Fig. 4).
Given the weakest precondition semantics of a transition tr : WPσ ρ, our en-

coding of Veil DSL derives its more traditional relational counterpart as follows:

tr ′ : BigStep σ ρ ≜ λst0 res1 st1, ¬tr (λres st , ¬(res = res1 ∧ st = st1)) st0
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1 def enter.wp (n : N) : WP σ Unit :=
2 get ▷.bind fun (st : σ) ⇒
3 WP.req (st.n_have_privilege n) ▷.bind fun _ ⇒
4 WP.req (st.n_requesting n) ▷.bind fun _ ⇒
5 modify fun st ⇒
6 { st with crit := fun x ⇒ st.crit x ∨ x = n }

7 def WP.req (P : Prop) : WP σ Unit := fun st post ⇒
8 P → post () st
9 def enter (n : N) : BigStep σ Unit := fun st r st' ⇒

10 st.n_have_privilege n ∧
11 st.n_requesting n ∧ r = () ∧
12 st' = { st with crit := fun x ⇒ st.crit x ∨ x = n }

Fig. 4: Expansion steps for the enter action from Fig. 1.

Observe that tr (λres st , ¬(res = res1 ∧ st = st1)) expresses the weakest pre-
condition for the action tr under the postcondition that excludes result res1 and
state post as reachable outcomes. The definition of tr ′, thus, ensures that the
state st0 transitions to st1 with result res1 only when such weakest pre-condition
does not hold for st0, i.e., when st1 and res1 are reachable from st0. We formally
prove that this way of deriving tr ′ from tr is equivalent to the definition of tr ′ as
a relation using standard big-step semantics for language constructs (bindings,
assertions, etc.) for all actions tr with no failing assertions.

By applying this transformation and unfolding and simplifying all WPσ ρ
definitions, Veil generates a two-state formula for the enter action (Fig. 4, lines 9–
12). The result is used in the VC that is passed as a query to SMT solvers.

3.2 Soundness of the Verification Condition Generator

The main Veil soundness theorem states the equivalence of the two transition
semantics from Sec. 3.1: ∀s post , tr post s ⇔ (∀s′r′, tr ′s r′s′ ⇒ post r′s′) for all
actions tr with no failing assertions. In other words, the weakest precondition of
an action tr with a postcondition post holds on a state s if and only if the two-
state formula tr ′ relates the input state s to s′ and r′ from the postcondition
post . A proof of this theorem is generated by Veil for each action declaration
using Lean’s type class resolution mechanism.

3.3 Interaction with SMT

All proof obligations Veil generates are Lean proof goals, which users can choose
to either prove interactively using Lean’s native tactics, or discharge via Veil’s
built-in automation that leverages the cvc5 [5] and Z3 [33] SMT solvers.

Since Veil is embedded in a higher-order logic and our verification condition
generator (VCG) can emit goals that employ higher-order quantification (e.g.,
to model non-deterministic assignment to relations), the main challenge in dis-
charging Veil-generated goals with SMT is to reduce them to first-order logic. To
this end, we developed a suite of custom tactics and simp procedures to (a) auto-
matically destruct higher-order structures into first-order components, (b) hoist
higher-order quantification to the top-level of the goal (where SMT supports
declaring relations and functions), and (c) change the structure of the goal to
make it easier for SMT solvers to discharge (e.g., by recursively case-splitting
if-statements and invoking the SMT solver separately on each sub-branch).

To translate Lean goals to SMT-LIB queries, Veil employs the Lean-SMT [3]
and Lean-auto [1] libraries: Smt generates small, readable queries, but has longer
translation time, whereas Auto is fast but generates larger queries. Veil uses Auto
by default, but users can configure which translator to use on a per-query basis.
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3.4 Model Minimisation

When the SMT solver provides a counter-example (model), e.g., if an invariant
provided by the user is not inductive, Veil can minimise the counter-example
by issuing further incremental SMT queries to first reduce the sort and then
the relation cardinalities, similar to the approach taken by mypyvy [53]. The
counter-example is then displayed to the user in a human-readable format. In our
experience, minimisation was crucial to make protocol models understandable.

4 Evaluation and Case Studies

Veil is available online [42].4 We evaluated it w.r.t. the research questions below:

RQ1: Can Veil automatically verify complex distributed protocol specifications?
RQ2: Can Veil automatically verify distributed protocol specifications that are

encoded outside of Effectively Propositional Logic (EPR)?
RQ3: Is Veil expressive enough to supplement automation with interactive proofs?

The experiments in this section were ran on a 2024 MacBook Pro with the M4
chip, 32GB of RAM, with cvc5 version 1.2.1, Z3 version 4.14.0, Lean version
4.16.0, and Lean-auto revision 918a699. We use Ivy revision dbe45e7.

4.1 Automated Verification of Distributed Protocols

To test RQ1, we collected 16 case studies from the following sources:
– 9 case studies from IvyBench [13], with manually added invariants,
– 2 case studies from the work of Padon et al. [37] on verifying Paxos [20], and
– 5 case studies from various other sources [8, 28,39,58].

The case studies in our set total 1704 non-empty, non-comment lines of Lean
code (average 100 lines per file), 85 actions and 185 invariants. All benchmarks
have an equivalent formulation in Ivy. We attempted to prove each of them
automatically using #check_invariants, without any interactive proof. We ran
Veil on each of them separately and timed the execution by using Lean’s profiler.
For every benchmark, we also ran Ivy on the original formulation (with the
complete=fo flag when required). Veil’s timeout was its default of 5 seconds per
SMT query for all benchmarks except Rabia, where it was set to 120 seconds.
To the best of our knowledge, Ivy does not support per-query timeouts, so we
set its overall timeout to 300 seconds. Times are an average over 5 runs.

Our results are summarised in Fig. 5. It splits the total time taken by Veil
into simplification time (cf. Sec. 3.3), time taken for translation using Lean-auto,
and time taken by SMT solver calls. The time taken by Ivy is also displayed.
Veil successfully verified all benchmarks in the set, while Ivy has failed to verify
several benchmarks, which are marked with * in Fig. 5.

Veil verifies all but 2 benchmarks in under 15 seconds (87.5%), and all but 4
benchmarks in under 10 seconds (75%). Ivy times out for 2 of the benchmarks.
We conclude that Veil can verify a variety of distributed protocol specifications
without the need for user effort, and its performance in doing so is acceptable.

4 https://github.com/verse-lab/veil

https://github.com/verse-lab/veil
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Fig. 5: Results of running Veil and Ivy on the benchmark set. The bar heights
are normalised w.r.t. Veil verification times. All absolute times are in seconds.

4.2 Beyond EPR-Encoded Protocols

To test RQ2, we examine Veil’s performance on benchmarks whose encoding to
SMT is outside of the Effectively Propositional (EPR) fragment of first order
logic, which is known to be decidable [26]. SMT solvers use heuristics and spe-
cialised techniques to try to decide first-order non-EPR queries, which may yield
unknown. Nonetheless, it is often convenient to write protocols and algorithms
in general FOL, as substantial work is often needed to restate them in EPR [37].

We will examine four case studies from the benchmark set of Sec. 4.1:
– two variants of the Paxos protocol that are discussed in Padon et al. [37]:

the Single-Decree Paxos [20], as well as Vertical Paxos [22],
– the Suzuki-Kasami algorithm with positive integer indices (Sec. 2), and
– the Reliable Broadcast protocol [8].

These four benchmarks are expressed in unconstrained first-order logic, and their
encoding falls outside of EPR. Veil manages to verify all of them.5 When running
Ivy on these benchmarks (with the complete=fo flag to force Ivy to ignore that
they are outside of the decidable fragment), it succeeds in verifying Reliable
Broadcast and Suzuki-Kasami and times out for Paxos and Vertical Paxos.

From our results, we conclude that Veil is successful in verifying protocols
whose encodings are even outside of EPR, which increases its versatility.

4.3 Combining SMT Automation with Interactive Proofs

For the RQ3, we considered two case studies, which have theorems established
in interactive theorem provers, in addition to Ivy specifications. We ported these
theorems and their proofs into Veil, and report our findings below.

5 For Suzuki-Kasami, we disable the --finite-model-find option of cvc5, which Veil
enables by default. With it enabled, verification takes around 120 seconds.
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Stellar Consensus Protocol (SCP) [27] features a formally defined model that
includes several higher-order components, which, for example, involve quantifi-
cation over sets. To encode SCP into Ivy, Losa and Dodds [28] abstracted these
components by stating their required properties in FOL as assumptions; the
soundness of the abstraction w.r.t. a concrete higher-order model is then man-
ually proven in Isabelle/HOL [52]. In our case, we bundle the assumptions as a
type class and assume the existence of its instance during automated verifica-
tion, so that the assumptions can be utilised by SMT solvers. We further ported
the proofs from Isabelle/HOL to Veil and validated the abstraction soundness
by deriving an instance of the assumptions type class from the concrete model.
Compared with the combination Ivy + Isabelle/HOL, our approach allows the ab-
stract model, the concrete model, and their correspondence to be verified in the
same framework, without relying on a trusted manual assumption translation.

Rabia protocol [39] comes with a formalisation in both Ivy and the Rocq Prover,
where the Rocq one only differs in that it (1) interprets the type of phases
(a notion in Rabia) as the natural number type, (2) admits all invariants to be
checked by Ivy as axioms, and (3) proves several more properties to be invariants
of Rabia. To manually prove an invariant P in Rocq, it suffices to show that the
established invariants (either checked separately by Ivy and admitted in Rocq, or
proven in Rocq) entail P . Those additional invariants are proven in Rocq since
they cannot be proven in pure FOL, e.g., some require induction on phases.
Thanks to Veil’s support for manual invariant reasoning, we successfully verified
all additional invariants proven in the Rocq formulation, for the Veil encoding of
Rabia. Notably, during the porting process, we spotted one discrepancy between
an invariant in the Ivy formulation and the corresponding admitted one in the
Rocq code, since our Veil formulation was faithfully translated from the Ivy one,
and Lean complained when we attempted to use that invariant as it is used in
the original Rocq proof. Such nitpicking would require careful examination for
the original Ivy + Rocq combination, which, again, shows the benefits of having
a unified framework for both automated and interactive proofs.

5 Related and Future Work

Alloy [16] and the TLA+ toolbox [21] are de-facto the most popular tools to date
for prototyping and modelling state-transition systems in general and distributed
protocols in particular [2,36]. Alloy only allows for bounded verification, assuming
that each sort is finite. TLA+ is most commonly used for concrete-state model
checking of protocol designs [57], but also offers a proof system for deductive
verification, TLAPS [9]. Unlike Veil, TLAPS does not offer easy extensibility via
metaprogramming and relies on a trusted translation to the languages of its back-
end provers, Zenon [7] and Isabelle/HOL [52], to discharge its proof obligations.

The language of Veil is almost a verbatim port of RML, the specification
language of Ivy [38], while its bounded model checking capability is inspired
by a similar feature of mypyvy [53]. Unlike these tools, Veil is a foundational
verification framework with a formal soundness proof of its VC generator, offering
the full power of interactive proofs in Lean, its extensibility, and libraries.
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Veil is a spiritual successor of Jahob [19] and Why3 [11], tools that provide
rich specification languages and rely on third-party provers to discharge veri-
fication conditions, automatically or interactively. More recent frameworks Re-
finedC [45], RefinedRust [12], and Diaframe [34] are foundational embeddings of
mostly-automated verifiers into the Rocq Prover (formerly known as Coq). Those
tools target general-purpose programming languages and rely on custom tactic-
based automation rather than general-purpose first-order logic solvers, making
them not immediately suitable for effective reasoning about transition systems.

We believe our initial prototype of Veil opens several avenues for exciting
future work. In particular, we are planning to explore the integration of state-of-
the-art approaches for inferring system invariants in first-order logic [14,29,56,59]
into Veil. Given the available higher-order specification composition mechanisms
of Lean, we are also planning to explore ways to compose properties of individu-
ally verified protocols, in the style of the recent Bythos framework [60]. Finally,
going beyond simple transition systems, we are hopeful that our experience of
implementing Veil will pave the way for embedding general-purpose SMT-based
program verifiers [23,24,35] into a foundational proof assistant.
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