PSYNC: A partially synchronous language
for fault-tolerant distributed algorithms

Cezara Dragoi, Thomas A. Henzinger, Damien Zufferey

(POPL ’16)

Overview

PSYNC

* is a domain-specific language (DSL)
 for programming fault-tolerant distributed algorithms
* in a high-level, round-based model with lockstep semantics

* which compiles into equivalent, efficient asynchronous programs
* and is suitable for semi-automated verification

PSYNC is descriptive enough PSYNC is sufficiently restricted so programs
to specify lots of dist. algos can be semi-automatically proven

Unify modelling, programming and verification
of fault-tolerant distributed algorithms

PSYNC can be compiled
into asynchronous programs

Workflow

Manually encode
candidate
iInvariants

Automatic
checking

Write program in
high-level
semantics

Execute in
Compile sy dSYNchronous
runtime

Why does it matter?

* Fault-tolerant distributed systems are complex:
* packets get re-ordered, duplicated or dropped
* machines fail & potentially restart
e concurrency is hard

* For critical applications, we want assured correctness
* we need formal verification
* but want development and verification to be easy

* PSYNC provides a solution

Internals

How does it work?

 Communication-closed rounds with lockstep semantics:
e a PSYNC program is defined as a sequence of rounds
* all processes execute the same round

* messages sent within a round are either delivered in that round or dropped
forever

* Each round consists of two operations, executed in this order:
1. Send —send messages
2. Update — update local state based on messages received in this round

PSYNC is based on the Heard-Of (#0) model

a distributed system is a set of processes & an adversarial environment

e every round, the environment decides which messages processes receive

* each process p has a Heard-Of set, HO(p) = the set of processes p hears from

* in a given round, process p receives a message from process gif gsends a
message to pand g € HO(p)

* HO uniformly models asynchronous behaviour and faults while providing
the illusion of a lockstep semantics

* A dropped message sent from gto p can be modelled as:
« q & HO(p)

* A crashed process g can be modelled as:
* Vp, q € HO(p)

e Generally, assumptions regarding the #O sets can be given as linear
temporal logic (LTL) formulas

P3

Collect Candidate Quorum

Accept

77 K '77

K

\

/

Collect Candidate Quorum Accept

N\
b/ N\ \

(a) An asynchronous, faulty execution of the LastVoting

Collect Candidate Quorum Accept
P1 ' ' ‘

w2/ L N 7 |\

(b) Corresponding indistinguishable lockstep execution

LastVoting: Paxos adapted to HO model

interface
init(v: Int); out(v: Int)

variable
X: Int; ts: Int; vote: Int
ready: Boolean; commit: Boolean
decided: Boolean; decision: Int

//auxiliary function: rotating coordinator
def coord(phi: Int): ProcessID =
new ProcessID((phi/phase.length) % n)

//initialization
def init(v: Int) =
X =V
ts := -1
ready := false
commit := false

decided := false

| | val phase = Array[Round] (//the rounds

2 Round /* Collect */ {

3 def send(): Map[ProcessID, (Int,Int)] =
4 return MapOf (coord(r) — (x, ts))

5 def update(mbox: Map[ProcessID, (Int,Int)]) =
6 if (id = coord(r) A mbox.size > n/2)
7 vote := mbox.valWithMaxTS

8 commit := true },

9 Round /* Candidate */ {

10 def send(): Map[ProcessID, Int] =

1 if (id = coord(r) A commit) return
broadcast (vote)

12 else return ()

13 def update(mbox: Map[ProcessID, Int]) =
14 if (mbox contains coord(r))

15 x := mbox(coord(r))

16 ts := r/4 },

[&
19

20

Round /* Quorum */ {
def send(): Map[ProcessID, Int] =
if (ts = r/4) return MapOf(coord(r) — x)
else return ()
def update(mbox: Map[ProcessID, Int]) =
if (id = coord(r) A mbox.size > n/2)
ready := true },
Round /#* Accept */ {
def send(): Map[ProcessID, Int] =
if (id = coord(r) A ready) return broadcast(vote)
else return ()
def update(mbox: Map[ProcessID, Int]) =
if (mbox contains coord(r) A —decided)
decision := mbox(coord(r))
out (decision)
decided := true
ready := false
commit := false })

Properties for LastVoting

 Safety (agreement)
O(Vp, p'. p.decided A p'.decided —> p.decision = p’.decision)
with the (simplified) invariant:

Vp. p.decided = false
v dut,A. A={p|pts >t} AN|A| >n/2
AVp.p € A= px=nw.

* Liveness
O(Vp. p.decided)

val noDecision: Formula = P.forall(1 => !i.decided && 'i.ready)

val majority: Formula =
V.exists(v => V.exlists(t => {
val A = P.filter(1 => i.ts >= t)
A.size > n/2 &&

r > 0 &&

t <= r/4 &&

P.forall(1 == (A.contains(i) === (1.X == v)) &&
(i.decided ==> (i.decision == v)) &&
(i.commit ==> (i.vote == v)) &&
(i.ready ==> (i.vote == v)) &&
((1.ts == r/4) ==> coord.commit))

}))
val keepInit: Formula = P.forall(1 => P.exists(j1 => i.x == 1init(j1.x)))

val safetyInv = And(keepInit, Or(noDecision, majority))

Semantics, runtime & verification

INIT
init(vyp)

Vpe P.x — s(p)
0, {init, (v
y linttp (Vp)[pE P} (Snd, s, 0,0, HO)
SEND
hase[r|.send(m)
Vp € P.s(p) SN ()
msg = {(p,t,q) |p € PA(t,q) € mp}
sen T P10 !
(Snd, s,r,0,HO) { dp{i)}'pE J (Updt, s,r,msg, HO")
UPDATE

Vp € P. mbox, = {(q,t) | (¢.t,p) € msg A q € HO(p)}

phase[r|.update(mboxy),0p

Vp € P. 5(p) s'(p)
r=r+1 O={op|pcp}
update., (mbox ,O P
(Updt, s, r,msg, HO) fupdatey | —>p)|pep} <Sﬂ,d,5 L0, H0>

Runtime

* The lockstep semantics (LS) can be translated into asynchronous
semantics (AS)

* Rounds are implemented using a timeout
* Paper describes how an appropriate timeout should be determined

* If the specification is closed under indistinguishability, properties that
hold in LS also hold in AS

* Consensus, k-set agreement and lattice agreement are closed under indist.

Verification

e Can verify both safety and liveness

* Semi-automated, i.e. programmer manually writes invariants that are
auto-checked by an SMT solver (deductive verification)

* Could potentially support model-checking, as lockstep semantics is
sufficiently restricted

Conclusion

Take-aways

* PSYNC strikes a balance between high-level constructs, performance,
and automated verification

* The HO model along with communication-closed rounds and lockstep
execution, greatly simplifies implementing & verifying dist. algos

 For an important class of specifications including consensus, if a
PSYNC program satisfies the specification, then its runtime system
satisfies it as well

