
PSYNC: A partially synchronous language 
for fault-tolerant distributed algorithms

Cezara Drăgoi, Thomas A. Henzinger, Damien Zufferey

(POPL ’16)



Overview



PSYNC

• is a domain-specific language (DSL)

• for programming fault-tolerant distributed algorithms

• in a high-level, round-based model with lockstep semantics

• which compiles into equivalent, efficient asynchronous programs

• and is suitable for semi-automated verification



Unify modelling, programming and verification

of fault-tolerant distributed algorithms

PSYNC is descriptive enough
to specify lots of dist. algos

PSYNC is sufficiently restricted so programs
can be semi-automatically proven

PSYNC can be compiled
into asynchronous programs



Workflow

Write program in 
high-level 
semantics

Manually encode 
candidate 
invariants

Automatic 
checking

Compile
Execute in 

asynchronous 
runtime



Why does it matter?

• Fault-tolerant distributed systems are complex:
• packets get re-ordered, duplicated or dropped

• machines fail & potentially restart

• concurrency is hard

• For critical applications, we want assured correctness
• we need formal verification

• but want development and verification to be easy

• PSYNC provides a solution



Internals



How does it work?

• Communication-closed rounds with lockstep semantics:
• a PSYNC program is defined as a sequence of rounds

• all processes execute the same round

• messages sent within a round are either delivered in that round or dropped 
forever

• Each round consists of two operations, executed in this order:
1. Send – send messages

2. Update – update local state based on messages received in this round



• a distributed system is a set of processes & an adversarial environment

• every round, the environment decides which messages processes receive

• each process p has a Heard-Of set, HO(p) = the set of processes p hears from

• in a given round, process p receives a message from process q if q sends a 
message to p and q ∈ HO(p)

• HO uniformly models asynchronous behaviour and faults while providing 
the illusion of a lockstep semantics

PSYNC is based on the Heard-Of (HO) model



• A dropped message sent from q to p can be modelled as:
• 𝑞 ∉ 𝐻𝑂(𝑝)

• A crashed process q can be modelled as:
• ∀𝑝, 𝑞 ∉ 𝐻𝑂(𝑝)

• Generally, assumptions regarding the HO sets can be given as linear 
temporal logic (LTL) formulas







LastVoting: Paxos adapted to HO model









Properties for LastVoting

• Safety (agreement)

with the (simplified) invariant:

• Liveness





Semantics, runtime & verification





Runtime

• The lockstep semantics (LS) can be translated into asynchronous 
semantics (AS)

• Rounds are implemented using a timeout
• Paper describes how an appropriate timeout should be determined

• If the specification is closed under indistinguishability, properties that 
hold in LS also hold in AS
• Consensus, k-set agreement and lattice agreement are closed under indist.



Verification

• Can verify both safety and liveness

• Semi-automated, i.e. programmer manually writes invariants that are 
auto-checked by an SMT solver (deductive verification)

• Could potentially support model-checking, as lockstep semantics is 
sufficiently restricted



Conclusion



Take-aways

• PSYNC strikes a balance between high-level constructs, performance,
and automated verification

• The HO model along with communication-closed rounds and lockstep
execution, greatly simplifies implementing & verifying dist. algos

• For an important class of specifications including consensus, if a
PSYNC program satisfies the specification, then its runtime system
satisfies it as well


