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How does it work?
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OOPSLA 2017
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POPL 2019



Rewrite the implementation to match 
programmer’s mental model.

… and verify that!
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In many systems, asynchrony is inconsequential if we are concerned 
only with properties of halting states.
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In many systems, asynchrony is inconsequential if we are concerned 
only with properties of halting states.

⇝

qp

We can afford not to reason about asynchrony if we can guarantee that 
all schedules terminate in equivalent states.
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When asynchrony is inconsequential

• processes block on receiving messages → execution is sequential
• if every (logical) send

• has exactly one matching (logical) receive (reduction)

• one-to-one communication

• OR has multiple matching receives, but they differ only in process IDs         (symmetry)

• one-to-many communication

• processes do not communicate → execution is parallel
(almost symmetry = processes that do not communicate + one-to-many sends)
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When asynchrony is inconsequential

• processes block on receiving messages → execution is sequential
➔sequential sub-schedules = can be combined into one sequential schedule

• processes do not communicate → execution is parallel
➔non-interfering sub-schedules = every interleaving is equivalent
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When asynchrony is inconsequential

• processes block on receiving messages → execution is sequential
➔sequential sub-schedules = can be combined into one sequential schedule

• processes do not communicate → execution is parallel
➔non-interfering sub-schedules = every interleaving is equivalent

synchronization

=

parallel composition of non-interfering sequential processes
(with no sends/receives; only variable reads/writes)
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synchronization
=

parallel composition of non-interfering sequential processes

=

easy to automatically verify
“using Floyd-Hoare style Verification Conditions and SMT”
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synchronization
=

parallel composition of non-interfering sequential processes

=

easy to automatically verify
“using Floyd-Hoare style Verification Conditions and SMT”

Programmer only needs to provide loop invariants.
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parallel composition of non-interfering sequential processes

program
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parallel composition of non-interfering sequential processes
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parallel composition of non-interfering sequential processes

sequential 
prefix

program
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parallel composition of non-interfering sequential processes

sequential 
prefix

parallel 
context

program
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parallel composition of non-interfering sequential processes

program
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⇝
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destination
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⇝
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⇝
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message 
value
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⇝
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message 
type
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⇝

qp
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⇝

qp

message is symbolic
(it contains variable name, not value)
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Γ: (p, q, Ping, _, _m0)

[_m0 <- Ping]p

⇝

qp
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⇝
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Γ: (p, q, Ping, _, _m0)

[_m0 <- Ping]p
[v <- p._m0]q

[_m0 <- Ping]p
[v <- p._m0]q
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⇝

qp

[_m0 <- Ping]p
[v <- p._m0]q
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⇝

qp

Γ: (q, p, Pong, _, _m1)

[_m0 <- Ping]p
[v <- p._m0]q
[_m1 <- Pong]q
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⇝

qp

[_m0 <- Ping]p
[v <- p._m0]q
[_m1 <- Pong]q
[w <- q._m1]q
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⇝

qp

[_m0 <- Ping]p
[v <- p._m0]q
[_m1 <- Pong]q
[w <- q._m1]q

q.v <- Ping

p.w <- Pong
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⇝
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Limitations

• Approach is not applicable to arbitrary protocols
• if asynchrony is not almost symmetric, then it is not supported

• Very restrictive round non-interference condition
• maybe can identify state-sharing patterns that produce decidable VCs?

• Only restrictive communication patterns are supported
• effectively, if it does not look like a method call, it’s not supported
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