
Pretend Synchrony
Synchronous Verification of Asynchronous Distributed Programs

6 November 2020 1

Pretend Synchrony
Synchronous Verification of Asynchronous Distributed Programs

How does it work?

6 November 2020 2

OOPSLA 2017

6 November 2020 3

6 November 2020 4

POPL 2019

Rewrite the implementation to match
programmer’s mental model.

… and verify that!

6 November 2020 5

6 November 2020 6

6 November 2020 7

In many systems, asynchrony is inconsequential if we are concerned
only with properties of halting states.

6 November 2020 8

In many systems, asynchrony is inconsequential if we are concerned
only with properties of halting states.

⇝

qp

6 November 2020 9

In many systems, asynchrony is inconsequential if we are concerned
only with properties of halting states.

⇝

qp

We can afford not to reason about asynchrony if we can guarantee that
all schedules terminate in equivalent states.

6 November 2020 10

When asynchrony is inconsequential

• processes block on receiving messages → execution is sequential
• if every (logical) send

• has exactly one matching (logical) receive (reduction)

• one-to-one communication

• OR has multiple matching receives, but they differ only in process IDs (symmetry)

• one-to-many communication

• processes do not communicate → execution is parallel
(almost symmetry = processes that do not communicate + one-to-many sends)

6 November 2020 11

6 November 2020 12

When asynchrony is inconsequential

• processes block on receiving messages → execution is sequential
➔sequential sub-schedules = can be combined into one sequential schedule

• processes do not communicate → execution is parallel
➔non-interfering sub-schedules = every interleaving is equivalent

6 November 2020 13

When asynchrony is inconsequential

• processes block on receiving messages → execution is sequential
➔sequential sub-schedules = can be combined into one sequential schedule

• processes do not communicate → execution is parallel
➔non-interfering sub-schedules = every interleaving is equivalent

synchronization

=

parallel composition of non-interfering sequential processes
(with no sends/receives; only variable reads/writes)

6 November 2020 14

synchronization
=

parallel composition of non-interfering sequential processes

=

easy to automatically verify
“using Floyd-Hoare style Verification Conditions and SMT”

6 November 2020 15

synchronization
=

parallel composition of non-interfering sequential processes

=

easy to automatically verify
“using Floyd-Hoare style Verification Conditions and SMT”

Programmer only needs to provide loop invariants.

6 November 2020 16

parallel composition of non-interfering sequential processes

program

6 November 2020 17

parallel composition of non-interfering sequential processes

program

6 November 2020 18

parallel composition of non-interfering sequential processes

program

6 November 2020 19

parallel composition of non-interfering sequential processes

sequential
prefix

program

6 November 2020 20

parallel composition of non-interfering sequential processes

sequential
prefix

parallel
context

program

6 November 2020 21

parallel composition of non-interfering sequential processes

program

6 November 2020 22

parallel composition of non-interfering sequential processes

program

6 November 2020 23

parallel composition of non-interfering sequential processes

program

6 November 2020 24

⇝

qp

6 November 2020 25

⇝

qp

destination

6 November 2020 26

⇝

qp

6 November 2020 27

⇝

qp

message
value

6 November 2020 28

⇝

qp

6 November 2020 29

⇝

qp

message
type

6 November 2020 30

⇝

qp

6 November 2020 31

⇝

qp

message is symbolic
(it contains variable name, not value)

6 November 2020 32

Γ: (p, q, Ping, _, _m0)

[_m0 <- Ping]p

⇝

qp

6 November 2020 33

⇝

qp

Γ: (p, q, Ping, _, _m0)

[_m0 <- Ping]p
[v <- p._m0]q

[_m0 <- Ping]p
[v <- p._m0]q

6 November 2020 34

⇝

qp

[_m0 <- Ping]p
[v <- p._m0]q

6 November 2020 35

⇝

qp

Γ: (q, p, Pong, _, _m1)

[_m0 <- Ping]p
[v <- p._m0]q
[_m1 <- Pong]q

6 November 2020 36

⇝

qp

[_m0 <- Ping]p
[v <- p._m0]q
[_m1 <- Pong]q
[w <- q._m1]q

6 November 2020 37

⇝

qp

[_m0 <- Ping]p
[v <- p._m0]q
[_m1 <- Pong]q
[w <- q._m1]q

q.v <- Ping

p.w <- Pong

6 November 2020 38

6 November 2020 39

6 November 2020 40

6 November 2020 41

6 November 2020 42

6 November 2020 43

6 November 2020 44

6 November 2020 45

6 November 2020 46

6 November 2020 47

6 November 2020 48

6 November 2020 49

⇝

6 November 2020 50

⇝

6 November 2020 51

⇝

6 November 2020 52

⇝

6 November 2020 53

⇝

6 November 2020 54

6 November 2020 55

Limitations

• Approach is not applicable to arbitrary protocols
• if asynchrony is not almost symmetric, then it is not supported

• Very restrictive round non-interference condition
• maybe can identify state-sharing patterns that produce decidable VCs?

• Only restrictive communication patterns are supported
• effectively, if it does not look like a method call, it’s not supported

6 November 2020 56

