Toychain

Formally Verified Blockchain Consensus

George Pirlea and llya Sergey

Tuesday, March 26, 2019

Toychain

* Internship project with llya in summer 2017

* mechanised proof of quiescent consistency in Coq
* published at CPP in Jan 2018

* Continued for my Master’s thesis

e extraction to Ocaml

* proven-correct implementation of proof-of-work
Nakamoto consensus

Motivation

1. Understand blockchain consensus
e what it is
 how it works
* why it works: our formalisation

2. Lay foundation for verified practical implementation

* verified Byzantine-tolerant consensus layer Not there yet!
 platform for verified smart contracts

Nakamoto-style vs BFT-style

{tz:,tzs, tag, tzq, txa }

meaning of

* transforms a set of transactions i

: : re
transactions into a S not relevant

(- 4=

globally-agreed R

(@)

sequence S 3

S O

e “distributed timestamp O

server” (Nakamoto2008)

txy — txg — txg — tg — tag

{tz:,tzs, tag, tzq, txa }

| [tzs,tzs] < [tzs] [tz1,tza]

GB = genesis block

txg — txg — txg — t21 — t2

WIS

£
//
//
//
//
£
//
//

{

Tuesday, March 26, 2019

The timechain is a tree shaped structure starting with the

genesis block at the root, with each block potentially having multiple
candidates to be the next block. pprev and pnext link a path through the
main/longest chain. A blockindex may have multiple pprev pointing back
to it, but pnext will only point forward to the longest branch, or will
be null i1f the block is not part of the longest chain.

class CBlockIndex

public:

CBlockIndex* pprev;
CBlockIndex* pnext;
unsigned int nFile;
unsigned int nBlockPos;
int nHeight;

Pre-release Bitcoin source code, Nov. 2008

Tuesday, March 26, 2019

Tuesday, March 26, 2019

Tuesday, March 26, 2019

Tuesday, March 26, 2019

60

GB

C1

Nakamoto-style consensus can
fork!

Need a way to decide which of
the branches is the “main” one
=» fork choice rule

60

GB

C1

Nakamoto-style consensus can
fork!

Need a way to decide which of
the branches is the “main” one
=» fork choice rule

60

DO

GB

C1

Nakamoto-style consensus can
fork!

Need a way to decide which of
the branches is the “main” one
=» fork choice rule

“most accumulated proof-of-work”

60

DO

GB

Tuesday, March 26, 2019

C1

Nakamoto-style consensus can
fork!

Need a way to decide which of
the branches is the “main” one
=» fork choice rule

Tuesday, March 26, 2019

Tuesday, March 26, 2019

Tuesday, March 26, 2019

Tuesday, March 26, 2019

Tuesday, March 26, 2019

Tuesday, March 26, 2019

Tuesday, March 26, 2019 9

GB A B C D

BFT-style consensus does not fork.
The protocol is inherently synchronized.

Still need a way to choose which
participants can create blocks
—> validator acceptance function

GB A B C D

BFT-style consensus does not fork.
The protocol is inherently synchronized.

Still need a way to choose which
participants can create blocks
—> validator acceptance function

Bitcoin has this too:
it’s the proof-of-work!

Toychain formalises
Nakamoto-style
consensus.

Nakamoto consensus

Blocks and chains

b € Block ::= { prev : Hash; txs : Tx™; pf : Proof }
¢ € Chain = Block™

Blocks and chains

N

b € Block ::= { prev : Hash; txs : Tx™; pf : Proof }
¢ € Chain = Block™

links blocks together

Blocks and chains

N

b € Block ::= { prev : Hash; txs : Tx™; pf : Proof }
¢ € Chain = Block™

links blocks together hashy, : Block — Hash

Blocks and chains

b € Block ::= { prev : Hash; txs : Tx™; pf : Proof }
¢ € Chain = Block™

Blocks and chains

b € Block ::= { prev : Hash; txs : Tx™; pf : Proof }

¢ € Chain = Block™ /

proof that this block
was minted in
accordance to the
rules of the protocol

Blocks and chains

b € Block ::= { prev : Hash; txs : Tx™; pf : Proof }

¢ € Chain = Block™ /

oroof-of-work proof that this block
was minted in
accordance to the

roof-of-stake
P rules of the protocol

Blocks and chains

b € Block ::= { prev : Hash; txs : Tx™; pf : Proof }
¢ € Chain = Block™

GB : Block

Minting and veritying

mkProof : Chain — Tx* — option Proof
VAF : Block — Chain — bool

Minting and veritying
/ try to generate a proof = “ask the protocol for permission” to mint

mkProof : Chain — Tx* — option Proof
VAF : Block — Chain — bool

Minting and veritying
/ try to generate a proof = “ask the protocol for permission” to mint

mkProof : Chain — Tx* — option Proof
VAF : Block — Chain — bool

validate a proof = ensure protocol rules were followed

Resolving conflict

FCR : Chain —» Chain — bool

Toychain model

WIS

£
//
//
//
//
£
//
//

{

The timechain is a tree shaEed structure starting with the

genesis block at the root, with each block potentially having multiple
candidates to be the next block. pprev and pnext link a path through the
main/longest chain. A blockindex may have multiple pprev pointing back
to it, but pnext will only point forward to the longest branch, or will
be null i1f the block is not part of the longest chain.

class CBlockIndex

public:

CBlockIndex* pprev;
CBlockIndex* pnext;
unsigned int nFile;
unsigned int nBlockPos;
int nHeight;

Pre-release Bitcoin source code, Nov. 2008

Tuesday, March 26, 2019 16

* distributed
* multiple nodes

e all start with same GB

(2)

GB

GB

GB

* distributed
* multiple nodes

view of all
participants’ state

e all start with same GB

Tuesday, March 26, 2019 17

* distributed
* multiple nodes

e all start with same GB

what everyone

eventually agrees on \

(1)

GB

GB GB

e distributed
* multiple nodes
* message-passing
over a network

e all start with same GB

GB

GB

 distributed
* multiple nodes
* message-passing
over a network

e all start with same GB
 have a transaction pool

GB
{ txs }

GB
{ xs }

distributed
* multiple nodes
* message-passing
over a network

all start with same GB
have a transaction pool
can mint blocks

GB

IX]

e distributed => concurrent

* multiple nodes
* message-passing over
a network

* multiple transactions can
be issued and propagated
concurrently

GB

IX]

GB
1
A
{ x5 }
’ﬂ K
tX%”..’ .."QZZX3 . X3
”‘. ;.’ ¢‘q
(2) (3)
GB GB
1x
I & N |
A A

e distributed => concurrent

* multiple nodes
* message-passing over
a network

* blocks can be minted
without full knowledge of
all transactions

GB
1
A
ﬂ\
B
{}
x> .”ﬂ
(2) (3)
GB GB
1 0
A A

* chain fork has happened,
but nodes don’t know

Tuesday, March 26, 2019

23

* as block messages

propagate, nodes become
aware of the fork

and use the fork choice
rule to resolve the conflcit

A
AN
cl |»B
{}
P A P
A A

Quiescent consistency

(1)

e distributed

Ix2, 1X3

X3

* multiple nodes 4
. AN
 all start with GB cl [
* message-passing over a L
network ﬁ
* equipped with same FCR @ O [
4‘ :
e quiescent consistency: when 2 /A\
all block messages have been c cl |5

delivered, everyone agrees th th

* Every node has same GB and same FCR

* Adding to block forest is commutative

* i.e. message delivery order does not matter
e system invariant: local + “in-flight” = global

* When all BlockMsg delivered, all block

forests equal
* FCR gives same result for all nodes

GB GB
A A
A C A
7 > 7y
C B

Assumptions®

* FCR imposes a strict total order on all blockchains

FCR rel : Ye1co,c1=caVeyp >co Ve >
FCR trans : Vcicpc3,c1 >coAcy>c3 — c1 > C3
FCR_nrefl : Vc,c >c¢ = False

Tuesday, March 26, 2019

28

Assumptions®

 FCR is additive

FCR ext : Y1 ¢o b, c1 ++ (b :: Cz) > C1
FCR subch : Vcico,c1 <oy = c¢9 >

Tuesday, March 26, 2019

30

Tuesday, March 26, 2019

30

Tuesday, March 26, 2019

30

Tuesday, March 26, 2019

30

Tuesday, March 26, 2019

30

Commutativity under
hash collisions?

What happens if hash(B) = hash(C)?

Commutativity under
hash collisions?

What happens if hash(B) = hash(C)?

hash_inj : Vxuy, #x =#y — x =1y

Commutativity under
hash collisions?

What happens if hash(B) = hash(C)?

Tuesday, March 26, 2019

31

Limitations of the proof

1. Practical FCRs are

Bitcoin: two blocks at same height have
same weight!

(not true across difficulty-change boundaries)

Ethereum: diff. chains can nonetheless
have same total work

not strict

60)

GB A B

C1

1. Practical FCRs are

Bitcoin: two blocks at same height have
same weight!

(not true across difficulty-change boundaries)

Ethereum: diff. chains can nonetheless
have same total work

not strict

60)

DO

GB A B

C1

2. BlockMsg are delivered over gossip

GB

* need to find a way to -
abstract gossip mechanism B
{ x2 }
e difficulty is in finding %%
appropriate abstraction; S e

proof follows trivially i

3. Byzantine adversaries can invalidate invariant

* relies on blocks only
being mined at chain tips

* indistinguishable from
honest miners

* true under cryptographic
assumptions

e contrary implies hash
prediction

Tuesday, March 26, 2019

GB

E

By

35

From Proof to Program

Invariant

Network definition

Protocol implementation

Block forest library

Consensus parameters

Type definitions

Tuesday, March 26, 2019

Invariant

Network definition

Protocol implementation

Block forest library

Consensus parameters
need to be

instantiated

Type definitions

Tuesday, March 26, 2019 37

Invariant

Network definition

Protocol implementation

Block forest library

Consensus parameters

Type definitions

Tuesday, March 26, 2019

Tuesday, March 26, 2019

Invariant
Network definition

Protocol implementation

Block forest library

Consensus parameters

Type definitions

37

Invariant

Network definition

i Protocol implementation

Block forest library

extracted
to OCaml

Consensus parameters

Type definitions

Tuesday, March 26, 2019 37

Invariant

purely
Coq

Network definition

i Protocol implementation

Block forest library

extracted
to OCaml

Consensus parameters

Type definitions

Tuesday, March 26, 2019 37

Record State :=
Node {
1d : Address:
peers : peers t;
blockTree : BlockTree;
txPool : TxPool;

}.

Definition procInt (st : State) (tr : InternalTransition) :=
let: Node n prs bt pool := st in
match tr with
| TXT tx => pair st (emitBroadcast n prs (TxMsg tx))

(* Assumption: nodes broadcast to themselves as well! => simplifies logic *)
| MintT =>
let: bc := btChain bt in
let: allowedTxs := [seq t <- pool | txValid t bc] in
match genProof bc allowedTxs ts with
| Some (txs, pf) =>
let: prevBlock := last GenesisBlock bc in
let: b := mkB (hashB prevBlock) txs pf in
if valid chain block bc b then
let: newBt := btExtend bt b in
let: newPool := [seq t <- pool | txValid t (btChain newBt)] in

let: ownHashes := dom newBt ++ [seq hashT t | t <- newPool] in
pair (Node n prs newBt newPool) (emitBroadcast n prs (BlockMsg b))
else

pair st emitZero
| None => pair st emitZero
end
end.

Tuesday, March 26, 2019 39

Definition procMsg (st: State) (from : Address) (msg: Message) :=

let: Node n prs bt pool := st in

match msg with

| BlockMsg b =>
let: newBt := btExtend bt b in
let: newPool := [seq t <- pool | txValid t (btChain newBt)] in
let: ownHashes := dom newBt ++ [seq hashT t | t <- newPool] in
pair (Node n prs newBt newPool) (emitBroadcast n prs (InvMsg ownHashes))

| InvMsg peerHashes =>
let: ownHashes := dom bt ++ [seq hashT t | t <- pool] in
let: newH := [seq h <- peerHashes | h \notin ownHashes] 1in
let: gets := [seq mkP n from (GetDataMsg h) | h <- newH] in
pair st (emitMany gets)

| TxMsg tx =>
let: newPool := tpExtend pool bt tx in
let: ownHashes := dom bt ++ [seq hashT t | t <- newPool] in

palir (Node n prs bt newPool) (emitBroadcast n prs (InvMsg ownHashes))
end.

Tuesday, March 26, 2019 40

(** Instantiate Toychain with a proof-of-work scheme **)
Module ProofOfWork <: (ConsensusParams TypesImpl).
Import TypesImpl.

Definition GenesisBlock : block :=
mkB (("0x6150cb353fe365318bel040f4f1d55babab235c7fdee7e94602fed76T112f2de")%string <: Hash)
[::]
((N of nat 0) <: VProof).

(* Hash should be HexStrings prefixed with 0x, e.g. '0x1c2139314aab35' *)

Parameter hashT : Transaction -> Hash.
Parameter hashB : block -> Hash.

Definition work (b : block) : WorkAmnt :=
count binary zeroes (hashB b).

Tuesday, March 26, 2019 41

(* You'd normally want some difficulty adjustment.*)
Definition VAF (b : Block) (bc : Blockchain) : bool :=
(* GenesisBlock doesn't have work requirements *)

if (b == GenesisBlock) then
if (bc == [::]) then true else false
(* ALL other blocks do *)
else if (12 <? (work b))%N then true else false.

(* For proof-of-work, this would be more aptly called "getNonce" *)
Parameter genProof : Blockchain -> TxPool -> option VProof.

Tuesday, March 26, 2019 42

(* Behaves as > *)
Definition FCR bc bc' : bool :=

let w := total work bc in

let w' := total work bc' in
let 1 := (List.length bc) in
let 1' := (List.length bc') 1in
let eW (= w == w' 1in

let eL := 1 == 1' 1in

let e0 := bc == bc' in

(* Written 1in this weird fashion to be able to prove both
transitivity and totality. *)

match eW, eL, e0 with

true, true, true => false

true, true, false => ords bc bc'

true, , =>1'>1

false, , =>w' >w
end.

Tuesday, March 26, 2019

43

while true do
procInt wrapper ();
procMsg wrapper ();
done;

aaaaaaaaaaaaaaaaaaaa

Demo

Final thoughts

Take away

* Formalisation of a blockchain consensus protocol in Coq:
* minimal set of required security primitives
* per-node protocol logic & data structures
 proof of global eventual consistency

* Extracted proven-correct OCaml implementation

https://github.com/certichain/toychain

Tuesday, March 26, 2019

47

https://github.com/certichain/toychain

Future work

* Abstract gossip mechanism
* Non-strict FCRs
* Probabilistic reasoning for security properties

and a lot more...

