
Toychain
Formally Verified Blockchain Consensus

George Pîrlea and Ilya Sergey

Tuesday, March 26, 2019 1



Toychain

• Internship project with Ilya in summer 2017
• mechanised proof of quiescent consistency in Coq
• published at CPP in Jan 2018

•Continued for my Master’s thesis
• extraction to Ocaml
• proven-correct implementation of proof-of-work 

Nakamoto consensus

Tuesday, March 26, 2019 2



Motivation

1. Understand blockchain consensus
• what it is

• how it works

• why it works: our formalisation

2. Lay foundation for verified practical implementation
• verified Byzantine-tolerant consensus layer

• platform for verified smart contracts

Tuesday, March 26, 2019 3

Not there yet!



Nakamoto-style vs BFT-style

Tuesday, March 26, 2019 4



b
lo

ck
ch

ai
n

co
n

se
n

su
s 

p
ro

to
co

l• transforms a set of 
transactions into a 
globally-agreed
sequence

• “distributed timestamp 
server” (Nakamoto2008)

Tuesday, March 26, 2019 5

meaning of 
transactions is 
not relevant



GB = genesis block

Tuesday, March 26, 2019 6



Tuesday, March 26, 2019 7

Pre-release Bitcoin source code, Nov. 2008



Tuesday, March 26, 2019 8

GB



Tuesday, March 26, 2019 8

GB A



Tuesday, March 26, 2019 8

GB A B



Tuesday, March 26, 2019 8

GB A B

C0

C1



Tuesday, March 26, 2019 8

GB A B

C0

C1

Nakamoto-style consensus can 
fork!

Need a way to decide which of 
the branches is the “main” one 

➔ fork choice rule



Tuesday, March 26, 2019 8

GB A B

C0

C1

Nakamoto-style consensus can 
fork!

Need a way to decide which of 
the branches is the “main” one 

➔ fork choice rule



Tuesday, March 26, 2019 8

GB A B

C0

C1

D0

Nakamoto-style consensus can 
fork!

Need a way to decide which of 
the branches is the “main” one 

➔ fork choice rule



Tuesday, March 26, 2019 8

GB A B

C0

C1

D0

Nakamoto-style consensus can 
fork!

Need a way to decide which of 
the branches is the “main” one 

➔ fork choice rule

“most accumulated proof-of-work”



Tuesday, March 26, 2019 9

GB



Tuesday, March 26, 2019 9

GB A



Tuesday, March 26, 2019 9

GB A B



Tuesday, March 26, 2019 9

GB A B C



Tuesday, March 26, 2019 9

GB A B C D



Tuesday, March 26, 2019 9

GB A B C D E



Tuesday, March 26, 2019 9

GB A B C D E F



Tuesday, March 26, 2019 9

GB A B C

BFT-style consensus does not fork.
The protocol is inherently synchronized.

Still need a way to choose which 
participants can create blocks
→ validator acceptance function

D E F



Tuesday, March 26, 2019 9

GB A B C

BFT-style consensus does not fork.
The protocol is inherently synchronized.

Still need a way to choose which 
participants can create blocks
→ validator acceptance function

Bitcoin has this too: 
it’s the proof-of-work!

D E F



Toychain formalises 
Nakamoto-style 

consensus.

Tuesday, March 26, 2019 10



Nakamoto consensus

Tuesday, March 26, 2019 11



Blocks and chains

Tuesday, March 26, 2019 12



Blocks and chains

Tuesday, March 26, 2019 12

links blocks together



Blocks and chains

Tuesday, March 26, 2019 12

links blocks together



Blocks and chains

Tuesday, March 26, 2019 12



Blocks and chains

Tuesday, March 26, 2019 12

proof that this block 
was minted in 
accordance to the 
rules of the protocol



Blocks and chains

Tuesday, March 26, 2019 12

proof that this block 
was minted in 
accordance to the 
rules of the protocol

proof-of-work

proof-of-stake



Blocks and chains

Tuesday, March 26, 2019 12



Minting and verifying

Tuesday, March 26, 2019 13



Minting and verifying

Tuesday, March 26, 2019 13

try to generate a proof = “ask the protocol for permission” to mint 



Minting and verifying

Tuesday, March 26, 2019 13

try to generate a proof = “ask the protocol for permission” to mint 

validate a proof = ensure protocol rules were followed



Resolving conflict

Tuesday, March 26, 2019 14



Toychain model

Tuesday, March 26, 2019 15



Tuesday, March 26, 2019 16

Pre-release Bitcoin source code, Nov. 2008



• distributed
• multiple nodes

• all start with same GB

Tuesday, March 26, 2019 17



• distributed
• multiple nodes

• all start with same GB

Tuesday, March 26, 2019 17

view of all 
participants’ state



• distributed
• multiple nodes

• all start with same GB

Tuesday, March 26, 2019 17

what everyone 
eventually agrees on



• distributed
• multiple nodes
• message-passing

over a network

• all start with same GB

Tuesday, March 26, 2019 18



• distributed
• multiple nodes
• message-passing 

over a network

• all start with same GB
• have a transaction pool

Tuesday, March 26, 2019 19



• distributed
• multiple nodes
• message-passing 

over a network

• all start with same GB
• have a transaction pool
• can mint blocks

Tuesday, March 26, 2019 20



• distributed => concurrent
• multiple nodes
• message-passing over 

a network

• multiple transactions can 
be issued and propagated 
concurrently

Tuesday, March 26, 2019 21



• distributed => concurrent
• multiple nodes
• message-passing over 

a network

• blocks can be minted 
without full knowledge of 
all transactions

Tuesday, March 26, 2019 22



• chain fork has happened, 
but nodes don’t know

Tuesday, March 26, 2019 23



Tuesday, March 26, 2019 24

• as block messages 
propagate, nodes become 
aware of the fork

• and use the fork choice 
rule to resolve the conflcit



• distributed
• multiple nodes
• all start with GB
• message-passing over a 

network
• equipped with same FCR

• quiescent consistency: when 
all block messages have been 
delivered, everyone agrees

Tuesday, March 26, 2019 25

Quiescent consistency



• Every node has same GB and same FCR

•Adding to block forest is commutative
• i.e. message delivery order does not matter

• system invariant: local + “in-flight” = global 

•When all BlockMsg delivered, all block 
forests equal
• FCR gives same result for all nodes

Tuesday, March 26, 2019 26



Assumptions*

• FCR imposes a strict total order on all blockchains

Tuesday, March 26, 2019 27



Tuesday, March 26, 2019 28

GB A B

C0

C1



Assumptions*

• FCR is additive

Tuesday, March 26, 2019 29



Tuesday, March 26, 2019 30

GB



Tuesday, March 26, 2019 30

GB A



Tuesday, March 26, 2019 30

GB A B



Tuesday, March 26, 2019 30

GB A B

C0

C1



Tuesday, March 26, 2019 30

GB A B

C0

C1

D0



Commutativity under 
hash collisions? 

Tuesday, March 26, 2019 31

What happens if hash(B) = hash(C)?



Commutativity under 
hash collisions? 

Tuesday, March 26, 2019 31

What happens if hash(B) = hash(C)?



Commutativity under 
hash collisions? 

Tuesday, March 26, 2019 31

What happens if hash(B) = hash(C)?



Limitations of the proof

Tuesday, March 26, 2019 32



Bitcoin: two blocks at same height have 
same weight!

(not true across difficulty-change boundaries)

Ethereum: diff. chains can nonetheless 
have same total work

Tuesday, March 26, 2019 33

1. Practical FCRs are not strict

GB A B

C0

C1



Bitcoin: two blocks at same height have 
same weight!

(not true across difficulty-change boundaries)

Ethereum: diff. chains can nonetheless 
have same total work

Tuesday, March 26, 2019 33

1. Practical FCRs are not strict

GB A B

C0

C1

D0



2. BlockMsg are delivered over gossip

• need to find a way to 
abstract gossip mechanism

• difficulty is in finding 
appropriate abstraction; 
proof follows trivially

Tuesday, March 26, 2019 34



3. Byzantine adversaries can invalidate invariant

• relies on blocks only 
being mined at chain tips
• indistinguishable from 

honest miners

• true under cryptographic 
assumptions
• contrary implies hash 

prediction

Tuesday, March 26, 2019 35



From Proof to Program
Getting executable code

Tuesday, March 26, 2019 36



Tuesday, March 26, 2019 37

Invariant

Network definition

Protocol implementation

Block forest library

Consensus parameters

Type definitions



Tuesday, March 26, 2019 37

Invariant

Network definition

Protocol implementation

Block forest library

Consensus parameters

Type definitions

need to be 
instantiated



Tuesday, March 26, 2019 37

Invariant

Network definition

Protocol implementation

Block forest library

Consensus parameters

Type definitions



Tuesday, March 26, 2019 37

Invariant

Network definition

Protocol implementation

Block forest library

Consensus parameters

Type definitions



Tuesday, March 26, 2019 37

Invariant

Network definition

Protocol implementation

Block forest library

Consensus parameters

Type definitions

extracted 
to OCaml



Tuesday, March 26, 2019 37

Invariant

Network definition

Protocol implementation

Block forest library

Consensus parameters

Type definitions

extracted 
to OCaml

purely 
Coq



Tuesday, March 26, 2019 38



Tuesday, March 26, 2019 39



Tuesday, March 26, 2019 40



Tuesday, March 26, 2019 41



Tuesday, March 26, 2019 42



Tuesday, March 26, 2019 43



Tuesday, March 26, 2019 44



Demo
Tuesday, March 26, 2019 45



Final thoughts

Tuesday, March 26, 2019 46



Take away

• Formalisation of a blockchain consensus protocol in Coq:
• minimal set of required security primitives
• per-node protocol logic & data structures
• proof of global eventual consistency

• Extracted proven-correct OCaml implementation

https://github.com/certichain/toychain

Tuesday, March 26, 2019 47

https://github.com/certichain/toychain


Future work

•Abstract gossip mechanism

•Non-strict FCRs

•Probabilistic reasoning for security properties

Tuesday, March 26, 2019 48

and a lot more…


