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Toychain

• Internship project with Ilya in summer 2017
• mechanised proof of quiescent consistency in Coq
• published at CPP in Jan 2018

•Continued for my Master’s thesis
• extraction to Ocaml
• proven-correct implementation of proof-of-work 

Nakamoto consensus
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Motivation

1. Understand blockchain consensus
• what it is

• how it works

• why it works: our formalisation

2. Lay foundation for verified practical implementation
• verified Byzantine-tolerant consensus layer

• platform for verified smart contracts
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Not there yet!



Nakamoto-style vs BFT-style
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l• transforms a set of 
transactions into a 
globally-agreed
sequence

• “distributed timestamp 
server” (Nakamoto2008)
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meaning of 
transactions is 
not relevant



GB = genesis block
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Pre-release Bitcoin source code, Nov. 2008
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Nakamoto-style consensus can 
fork!

Need a way to decide which of 
the branches is the “main” one 

➔ fork choice rule

“most accumulated proof-of-work”
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BFT-style consensus does not fork.
The protocol is inherently synchronized.

Still need a way to choose which 
participants can create blocks
→ validator acceptance function
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GB A B C

BFT-style consensus does not fork.
The protocol is inherently synchronized.

Still need a way to choose which 
participants can create blocks
→ validator acceptance function

Bitcoin has this too: 
it’s the proof-of-work!

D E F



Toychain formalises 
Nakamoto-style 

consensus.
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Nakamoto consensus
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Blocks and chains

Tuesday, March 26, 2019 12



Blocks and chains

Tuesday, March 26, 2019 12

links blocks together



Blocks and chains

Tuesday, March 26, 2019 12

links blocks together



Blocks and chains

Tuesday, March 26, 2019 12



Blocks and chains

Tuesday, March 26, 2019 12

proof that this block 
was minted in 
accordance to the 
rules of the protocol



Blocks and chains
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proof that this block 
was minted in 
accordance to the 
rules of the protocol

proof-of-work

proof-of-stake



Blocks and chains
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Minting and verifying
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Minting and verifying
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Minting and verifying

Tuesday, March 26, 2019 13

try to generate a proof = “ask the protocol for permission” to mint 

validate a proof = ensure protocol rules were followed



Resolving conflict
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Toychain model
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Pre-release Bitcoin source code, Nov. 2008



• distributed
• multiple nodes

• all start with same GB
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• distributed
• multiple nodes
• message-passing 

over a network

• all start with same GB
• have a transaction pool
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• distributed
• multiple nodes
• message-passing 

over a network

• all start with same GB
• have a transaction pool
• can mint blocks
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• distributed => concurrent
• multiple nodes
• message-passing over 

a network

• multiple transactions can 
be issued and propagated 
concurrently
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• distributed => concurrent
• multiple nodes
• message-passing over 

a network

• blocks can be minted 
without full knowledge of 
all transactions
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• chain fork has happened, 
but nodes don’t know
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• as block messages 
propagate, nodes become 
aware of the fork

• and use the fork choice 
rule to resolve the conflcit



• distributed
• multiple nodes
• all start with GB
• message-passing over a 

network
• equipped with same FCR

• quiescent consistency: when 
all block messages have been 
delivered, everyone agrees
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Quiescent consistency



• Every node has same GB and same FCR

•Adding to block forest is commutative
• i.e. message delivery order does not matter

• system invariant: local + “in-flight” = global 

•When all BlockMsg delivered, all block 
forests equal
• FCR gives same result for all nodes
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Assumptions*

• FCR imposes a strict total order on all blockchains
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Assumptions*

• FCR is additive
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Commutativity under 
hash collisions? 
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What happens if hash(B) = hash(C)?



Limitations of the proof
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Bitcoin: two blocks at same height have 
same weight!

(not true across difficulty-change boundaries)

Ethereum: diff. chains can nonetheless 
have same total work
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2. BlockMsg are delivered over gossip

• need to find a way to 
abstract gossip mechanism

• difficulty is in finding 
appropriate abstraction; 
proof follows trivially
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3. Byzantine adversaries can invalidate invariant

• relies on blocks only 
being mined at chain tips
• indistinguishable from 

honest miners

• true under cryptographic 
assumptions
• contrary implies hash 

prediction
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From Proof to Program
Getting executable code
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Invariant

Network definition

Protocol implementation

Block forest library

Consensus parameters

Type definitions

extracted 
to OCaml

purely 
Coq
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Demo
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Final thoughts

Tuesday, March 26, 2019 46



Take away

• Formalisation of a blockchain consensus protocol in Coq:
• minimal set of required security primitives
• per-node protocol logic & data structures
• proof of global eventual consistency

• Extracted proven-correct OCaml implementation

https://github.com/certichain/toychain
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https://github.com/certichain/toychain


Future work

•Abstract gossip mechanism

•Non-strict FCRs

•Probabilistic reasoning for security properties
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and a lot more…


