
Veil
A Framework for Automated and Interactive Verification

of Transition Systems

George Pîrlea

joint work with Vladimir Gladshtein, Elad Kinsbruner, Qiyuan Zhao, and Ilya Sergey

Available

CAV
Evaluation
Artifact

Reusable

CAV
Evaluation
Artifact Hello everyone. I am George Pîrlea

and I am excited to share Veil with
you today.

Veil is a framework for verifying
transition systems that combines
automated and interactive
approaches in a single multimodal
verification tool, embedded in Lean.

2

A Framework for Automated and Interactive Verification
of Distributed Protocols

Whilst you can in principle verify
arbitrary transition systems in Veil,
it’s really geared towards verifying
distributed protocols.

Distributed Protocols

3

Define how multiple parties collaborate with each other
to achieve a common goal 🤝

TwoPhase Commit Adds the Minister

AnneHenry

Minister

Anne, are you prepared to commit
to this relationship?⇣⇣⇣

Two-phase commit adds the minister to help implement those state changes.
He does that by communicating with the bride and groom.

[slide 41]

Two-Phase Commit depiction from Leslie Lamport’s video course on TLA+

A distributed protocol is a
transition system that defines how
multiple parties collaborate to
achieve a common goal, usually by
communicating over a network.
There’s all sorts of protocols out
there, and it turns out they’re quite
tricky to reason about, so it’s
helpful to have tools to aid us in
that reasoning.

Approaches for Verifying Distributed Protocols

4
Cost

Benefit Concrete state
model checking

Ivy

SMT-based
decidable

verification

IronFleet
Grove

Interactive
verification

SMT-based
verification

TLA+

maximum
attainable benefit

wide
practical use some use minor use ~ no use

There are many approaches to building assurance
in these protocols, and we can plot these
approaches on a chart, where the x axis is the cost
or effort involved in applying these approaches,
and the y axis is the benefit you can get from
them, in terms of number of bugs found, types of
properties you can verify, and so on.

On the far left side, we have approaches that are
low-cost, and chief among these is model
checking, and in particular concrete state model
checking using tools like TLA+ and TLC. These
tools are mature and easy to use, so they are used
extensively in industry, to build assurance in
distributed protocols.

Taking more effort, tools like Ivy, require you to
fit your protocol description in a decidable
fragment of FOL, which requires more expertise,
but let you actually verify — not just test — your
protocol entirely automatically. These are also
used in industry, but to a much a lesser extent.

And then there are approaches that are mostly
academic, frameworks such as IronFleet and
Grove, which use tools such as Dafny, Viper, or
Rocq as the substrate for verifying distributed
protocols. These let you prove very complex
properties, but see relatively little use in industry.

And the question is: why? Why are these more
powerful approaches not used?

Well, if you plot the maximum juice you can
squeeze out of these approaches, so to speak, you
get a curve that looks like this. A big initial jump
from testing and model checking, and then a
gradual slope upwards.

Approaches for Verifying Distributed Protocols

5
Time

Benefit
Concrete state
model checking

SMT-based
decidable

verification

Interactive
verification

SMT-based
verification

1-2 days 2-5 days weeks months+

But it generally does not make sense
to squeeze all the juice out of these
respective approaches because they
take immensely different amounts of
time and effort. So here the X axis is
time and Y axis is benefit, as before.

Modeling a protocol in TLA+ and
checking it with TLC takes on the
order of a couple days. Specifying a
protocol in Ivy takes a bit more, but
still on the order of a week. Using
Dafny or Viper to verify a protocol
generally will take longer, and using
an interactive theorem prover will
take longer still.

The problem is these very powerful
approaches, as you can see, have huge
upfront costs — you spend weeks,
months, sometimes years before you
start seeing any concrete benefit, and
that’s just impossible to justify in a
practical setting.

So what people do in practice is they
start with the approaches on the left,
and more than 90% of the time, that’s
good enough. When it’s not good
enough, for instance, when you want
to verify properties that are higher
order or that the automation simply
does not handle, then you have two
potential options.

When Your Tool is Not Sufficient

You either:

- use a combination of tools, or

- add an interactive escape hatch to your automated tool

6

You either use a combination of
tools, and that has well known
issues and requires some
duplication of effort, OR

You add an interactive escape hatch
to your automated tool. And the
user experience for that tends to be
sub-par, to put it mildly.

My message in this talk is: there is
another option. A better option.

Veil

It’s called Veil.

It’s not the verifier to kill all
verifiers yet, but it does solve this
issue.

And the way we did it is quite
simple…

We just built the whole verifier in Lean!

We just built the whole verifier in
Lean!

Veil
A verifier and DSL shallowly-embedded in Lean

Symbolic model checking via SMT

Out-of-the-box interactive proofs in Lean

Formalized meta-theory: sound VC generation

9

✅

✅

✅

✅

Lean is expressive enough that you
can do all these things. So Veil:

• Is a verifier built in Lean with a
shallowly embedded DSL for
specifying protocols;

• It does symbolic model checking
by calling external SMT solvers —
with proof reconstruction, if you
want;

• When the SMT solver doesn’t
cooperate, you can just prove your
VC manually — because every VC
in Veil is just a regular Lean goal;

• And because this all embedded in
Lean, you get to formalize and
prove all the meta-theory you
want. So we’ve proven that our
VC generation is sound.

Demo

Here’s what it looks like.

Points:
The way you’d use Veil is,
everything that can be done
automatically, you do automatically,
and what cannot be done
automatically, you do manually,
WITHOUT having to switch to a
different tool and WITHOUT
having to rewrite your specification.

The Future of Verifying Distributed Protocols

11
Time

Benefit
Concrete state
model checking

SMT-based
decidable

verification

Interactive
verification

SMT-based
verification

1-2 days 2-5 days weeks months+

Veil

It’s not there yet, but the hope is
eventually, with Veil, things will
look like this.

A single expressive tool in Lean that
seamlessly employs all of these
approaches, so you only pay the cost
imposed by the complexity of your
problem rather than by the
inadequacy of your tools.

Take Aways
• Veil is a Lean framework for automated/

interactive verification of distributed protocols

• Shallow embedding of the language,
VCs are generated via a Dijkstra monad

• Foundational: different VC generators are proven
sound wrt. each other

• Acceptable performance for FOL via SMT,
seamless integration with HOL specifications

Thank you!
12

github.com/verse-lab/veil

Thank you very much. That’s all I
have.

http://github.com/verse-lab/veil

