Formally verifying Coco

George Pîrlea

About me

Background:

- formal verification
- distributed systems

- currently undergrad at UCL
- looking to do a PhD

Current focus:

• blockchain consensus protocols

Research motivation:

• trustworthy censorship-resistant digital infrastructure

This work

- Created a formal model of Coco in F*
 - node-local behaviour of crash-fault-tolerant replication (CFTR)
 - core Coco service: commands, user-defined application, shared log
- Proved some high-level integrity properties
 - any CFTR protocol which satisfies the spec is *correct*
 - Coco, using such a protocol, is **sequentially consistent**

Outline

- model break-down
 - focus on highlighting assumptions
- sequential consistency
 - prerequisites
 - visual proof
- conclusions & future work

Model

- crash-fault-tolerant consensus
 - described in terms of the local behaviour at each node
- Coco running "on top" of the CFTR protocol
 - each Coco node:
 - participates in the consensus protocol
 - runs the user-defined service (application)
 - can respond to client commands

differs from implementation

Crash-fault-tolerant replication

Specification of the node-local behaviour of a consensus protocol

Extend

Extend

Truncate

Truncate

Truncate

can't truncate committed entries

local log

CFTR model

- replication system is a network of nodes
- nodes undergo local transitions (extend, truncate, commit)
 - transitions are relations between network states
- users can inject proposals into the system (propose)
- *ghost* global commit log (GCL)

CFTR model

- replication system is a network of nodes
- nodes undergo local transitions (extend, truncate, commit)
 - transitions are relations between network states
- users can inject proposals into the system (propose)
- ghost global commit log (GCL)

state required for the proofs; doesn't exist in implementation

CFTR model

- replication system is a network of nodes
- nodes undergo local transitions (extend, truncate, commit)
 - transitions are relations between network states
- users can inject proposals into the system (propose)
- *ghost* global commit log (GCL)

CFTR correctness

• there are no forks in the committed part of the logs

- a node has the global commit log as its local log
 every other committed log is a prefix
- all entries in the log correspond to a proposal

Coco_{m}

Our model of Coco, which (hopefully) over-approximates a subset of Coco's real behaviours

What is Coco_m?

• User-defined service running "on top" of CFTR

eval: log -> kvState
service: command -> kvState -> (tx × result)

- assuming commands have some unique identifier
- assuming different commands, when run on the same kvState, produce different transactions (extensions to the log)

- 1. Run a CFTR transition (extend, truncate or commit)
- 2. Process a client command

- 1. Run a CFTR transition (extend, truncate or commit)
- 2. Process a client command
 - a) eval log \rightarrow kvS

- 1. Run a CFTR transition (extend, truncate or commit)
- 2. Process a client command
 - a) eval log \rightarrow kvS
 - b) service cmd kvS \rightarrow (tx, result)

- 1. Run a CFTR transition (extend, truncate or commit)
- 2. Process a client command
 - a) eval log \rightarrow kvS
 - b) service cmd kvS \rightarrow (tx, result)
 - c) serialize_tx tx \rightarrow propose to CFTR
What can Coco_m do?

Any Coco_m node can:

- 1. Run a CFTR transition (extend, truncate or commit)
- 2. Process a client command
 - a) eval log \rightarrow kvS
 - b) service cmd kvS \rightarrow (tx, result)
 - c) serialize_tx tx \rightarrow propose to CFTR
 - d) return result to client

What can Coco_m do?

Any Coco_m node can:

- 1. Run a CFTR transition (extend, truncate or commit)
- 2. Process a client command
 - a) eval log \rightarrow kvS
 - b) service cmd kvS \rightarrow (tx, result)
 - c) serialize_tx tx \rightarrow propose to CFTR
 - d) return result to client

assuming correct transaction serializer & deserializer

assuming proposals uniquely identify the log which they extend assuming one atomic step

Proof infrastructure

It's proofs all the way down

Transitions, invariants

• Transitions are modelled as inductive data types (relations)

• An **invariant** is a property that holds over transitions

Instant vs. history properties

Network history: sequence of network states linked by valid transitions

- Instant: "there are no inconsistencies in the committed logs"
- **History**: "if a command is committed at some point, it is committed at all later points"

Coco_m instants

Model:

- network of nodes, each running their own replication node
- ghost state:
 - processed commands
 - mapping from commands to proposals and vice-versa

Proofs:

- the ghost state is internally consistent
- if a command is committed in state *m*, and you undergo a transition, it remains committed in state *m*'
- commands are not created committed

Coco_m histories

• history = non-empty list of Coco_m instants

Definitions

Instant properties:

• **committed** *cmd* = processed & included in GCL

Definitions

Instant properties:

• committed cmd = processed & included in GCL

History properties:

 sequentially committed *cmds* = committed at strictly increasing indices in the history What can Coco., do

Definitions

Instant properties:

• committed cmd = processed & included in GCL

History properties:

- sequentially committed cmds = committed at strictly increasing indices in the history
- sequentially consistent *cmds hist* = if *cmds* is sequentially committed, then the corresponding proposals form a subsequence in the GCL of the last instant in *hist*

Sequential consistency

With pictures!

p ₀	p ₁	p ₂	p ₃	p ₄	р ₅	p ₆	p ₇	p ₈	p ₉	p ₁₀	p ₁₁

p ₀	p ₁	p ₂	p ₃	p ₄	p ₅	p ₆	p ₇	p ₈	p ₉	p ₁₀	p ₁₁

p ₀	p ₁	p ₂	p ₃	p ₄	p ₅	p ₆	p ₇	p ₈	p ₉	p ₁₀	p ₁₁

p ₀	p ₁	p ₂	p ₃	p ₄	р ₅	p ₆	p ₇	p ₈	p ₉	p ₁₀	p ₁₁

C ₂₃	C ₅₂	C ₇₇
-----------------	-----------------	-----------------

p ₀	p ₁	p ₂	p ₃	p ₄	p ₅	p ₆	p ₇	p ₈	p ₉	p ₁₀

p ₀	p ₁	p ₂	p ₃	p ₄	p ₅	p ₆	p ₇	p ₈	p ₉	p ₁₀

p ₀	p ₁	p ₂	p ₃	p ₄	p ₅	p ₆	p ₇	p ₈	p ₉	p ₁₀
										1

p ₀	p ₁	p ₂	p ₃	p ₄	p ₅	p ₆	p ₇	p ₈	p ₉	p ₁₀
										1

p ₀	p ₁	p ₂	p ₃	p ₄	p ₅	p ₆	p ₇	p ₈	p ₉	p ₁₀
----------------	----------------	----------------	----------------	----------------	----------------	----------------	----------------	----------------	----------------	-----------------

p ₀	p ₁	p ₂	p ₃	p ₄	p ₅	p ₆	p ₇	p ₈	p ₉	p ₁₀

p ₀	p ₁	p ₂	p ₃	p ₄	p ₅	p ₆	p ₇	p ₈	p ₉	p ₁₀
										1

p ₀	p ₁	p ₂	p ₃	p ₄	p ₅	p ₆	p ₇	p ₈	p ₉	p ₁₀

p₀

Proof: new commits extend the log

p₀

Proof: new commits extend the log

p ₀	p ₁	p ₂	p ₃	p ₄	p ₅	p ₆	p ₇	p ₈	p ₉	p ₁₀

p ₀	p ₁	p ₂	p ₃	p ₄	p ₅	p ₆	p ₇	p ₈	p ₉	p ₁₀

p ₀	p ₁	p ₂	p ₃	p ₄	p ₅	p ₆	p ₇	p ₈	p ₉	p ₁₀

p ₀	p ₁	p ₂	p ₃	p ₄	p ₅	p ₆	p ₇	p ₈	p ₉	p ₁₀

p ₀	p ₁	p ₂	p ₃	p ₄	p ₅	p ₆	p ₇	p ₈	p ₉	p ₁₀

p ₀	p ₁	p ₂	p ₃	p ₄	p ₅	p ₆	p ₇	p ₈	p ₉	p ₁₀

p ₀	p ₁	p ₂	p ₃	p ₄	p ₅	p ₆	p ₇	p ₈	p ₉	p ₁₀

Final thoughts

Implementation effort

I spent a large amount of time proving facts about lists

Majority of the effort related to lemmas for sequential consistency

Component	# of lines	
Common	58	
Lemmas	724	
Replication	140	S W
Сосо	115	ir fe
Replication properties	122	
Coco instant properties	120	
Coco history properties	515	

Specifications were fairly intuitive; took a few hours

Future work

- Extend the CFTR spec to include:
 - snapshots
 - dynamic membership
 - majorities
- Revise Coco_m to allow reasoning about:
 - confidentiality
 - governance
 - disaster recovery